Published online Jun 28, 2018. doi: 10.3748/wjg.v24.i24.2605
Peer-review started: March 27, 2018
First decision: April 27, 2018
Revised: May 2, 2018
Accepted: May 11, 2018
Article in press: May 11, 2018
Published online: June 28, 2018
Processing time: 90 Days and 16.8 Hours
Pathogenesis of hepatocellular carcinoma (HCC) is a complicated biological process involving epigenetic and genetic changes. Most prior studies, however, mainly focused on either gene expression or methylation data but not the association and did not perform a conjoint analysis. The detection of methylated-differentially expressed genes (MDEGs) and a better understanding of their characteristics may be useful for discovering the molecular mechanism and pathogenesis of HCC.
In view of the insights from previous studies that MDEGs can be detected concurrently by joining gene expression and methylation microarray data, we explored the interaction network of differentially expressed genes and differentially methylated genes along with interrelated signalling pathways to find novel insights into the biological characteristics and pathways of methylated-differentially expressed genes in HCC.
The objective was to discover MDEGs in HCC, and explore relevant hub genes and potential pathways to make notional viewpoints available for the development and progression of HCC.
We analyzed differentially methylated genes and differentially expressed genes using a series of bioinformatics databases and tools including GEO Datasets, DAVID, STRING, and Cytoscape.
We categorized 266 hypermethylated, lowly expressed genes (Hyper-LGs) and 161 hypomethylated, highly expressed genes (Hypo-HGs) in GO, KEGG, and PPI analyses. Hyper-LGs mainly refer to endogenous and hormone stimulus, cell surface receptor linked signal transduction, and behavior, while Hypo-HGs refer to DNA replication, metabolic processes, cell cycle, and cell division. Pathway analysis showed that Hyper-LGs were enriched in cancer, Wnt, and chemokine signalling pathways, while Hypo-HGs were related to cell cycle and steroid hormone biosynthesis pathways. Based on PPI networks, PTGS2, PIK3CD, CXCL1, ESR1, and MMP2 were identified as hub genes for Hyper-LGs, and CDC45, DTL, AURKB, CDKN3, MCM2, and MCM10 were identified for Hypo-HGs by combining six ranked methods of cytoHubba.
We found that interactions among MDEGs of different functions and signalling pathways are related to the pathogenesis of HCC by a series of bioinformatics databases and tools. Hub genes for Hyper-LGs of HCC included PTGS2, PIK3CD, CXCL1, ESR1, and MMP2; such genes for Hypo-HGs included CDC45, DTL, AURKB, CDKN3, MCM2, and MCM10. As special biomarkers based on aberrant methylation, these hub genes might be useful for accurate diagnosis and treatment of HCC. This study provides hypothetical and biological characteristic insight into the pathogenesis of HCC.
The present findings indicate that the MDEGs in HCC can have a regulatory function in biological processes and molecular function and that they are reliable with functional enrichment analysis. As some genes and pathways identified in the present study have not been formally investigated as targets in the progression of HCC, further research is needed.