Review
Copyright ©The Author(s) 2003. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jun 15, 2003; 9(6): 1165-1169
Published online Jun 15, 2003. doi: 10.3748/wjg.v9.i6.1165
DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development
Feng Zhu, Ming Zhang
Feng Zhu, Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310031, Zhejiang Province, China
Ming Zhang, College of Life Science, Zhejiang University, Hangzhou 310012, Zhejiang Province, China
Author contributions: All authors contributed equally to the work.
Correspondence to: Professor Ming Zhang, College of Life Science, Zhejiang University, Hangzhou 310012, Zhejiang Province, China. zhangming_ls@zju.edu.cn
Telephone: +86-571-88273423 Fax: +86-571-88273423
Received: January 4, 2003
Revised: February 1, 2003
Accepted: February 17, 2003
Published online: June 15, 2003
Abstract

Information about the mechanisms that generate mutations in eukaryotes is likely to be useful for understanding human health concerns, such as genotoxicity and cancer. Eukaryotic mutagenesis is largely the outcome of attacks by endogenous and environmental agents. Except for DNA repair, cell cycle checkpoints and DNA damage avoidance, cells have also evolved DNA damage tolerance mechanism, by which lesion-targeted mutation might occur in the genome during replication by specific DNA polymerases to bypass the lesions (translesion DNA synthesis, TLS), or mutation on undamaged DNA templates (untargeted mutation) might be induced. DNA polymerase ζ (pol ζ), which was found firstly in budding yeast Saccharomyces cerevisiae and consists of catalytic subunit scRev3 and stimulating subunit scRev7, has received more attention in recent years. Pol ζ is a member of DNA polymerase δ subfamily, which belongs to DNA polymerase B family, and exists in almost all eukaryotes. Human homolog of the scRev3 gene is located in chromosome region 6q21, and the mouse equivalent maps to chromosome 10, distal to the c-myb gene and close to the Macs gene. Alternative splicing, upstream out-of frame ATG can be found in yeast scRev3, mouse and human homologs. Furthermore, the sequence from 253-323 immediate upstream of the AUG initiator codon has the potential to form a stem-loop hairpin secondary structure in REV3 mRNA, suggesting that human REV3 protein may be expressed at low levels in human cells under normal growth conditions. The functional domain analysis showed that yeast Rev3-980 tyrosine in conserved region II is at the polymerase active site. Human REV3 amino acid residues 1776-2195 provide a REV7 binding domain, and REV7 amino acid residues 1-211 provide a bind domain for REV1, REV3 and REV7 itself. More interestingly, REV7 interacts with hMAD2 and therefore might function in the cell cycle control by affecting the activation of APC (anaphase promoting complex). Currently it has been known that pol ζ is involved in most spontaneous mutation, lesion-targeted mutation via TLS, chemical carcinogen induced untargeted mutation and somatic hypermutation of antibody genes in mammalian. In TLS pathway, pol ζ acts as a "mismatch extender" with combination of other DNA polymerases, such as pol ι. Unlike in yeast, it was found that pol ζ also functioned in mouse embryonic development more recently. It was hypothesized that the roles of pol ζ in TLS and cell cycle control might contribute to mouse embryonic lethality.

Keywords: $[Keywords]