Basic Research
Copyright ©The Author(s) 2003. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Apr 15, 2003; 9(4): 808-812
Published online Apr 15, 2003. doi: 10.3748/wjg.v9.i4.808
Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxia/reoxygenation management
Bing-Wei Sun, Xiao-Chen Zhao, Guang-Ji Wang, Ning Li, Jie-Shou Li
Bing-Wei Sun, Ning Li, Jie-Shou Li, Department of General Surgery, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu Province, China
Xiao-Chen Zhao, Guang-Ji Wang, Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
Author contributions: All authors contributed equally to the work.
Supported by National Natural Science Foundation of China, No. 39970862
Correspondence to: Dr. Bing-Wei Sun, Research Institute of General Surgery, Chinese PLA General Hospital of Nanjing Military Area, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China. sunbinwe@hotmail.com
Telephone: +86-25-3387871 Ext 58088 Fax: +86-25-4803956
Received: October 4, 2002
Revised: November 5, 2002
Accepted: November 12, 2002
Published online: April 15, 2003
Abstract

AIM: To determine the regulation effects of recombinant human growth hormone (rhGH) on dipeptide transporter (PepT1) in Caco-2 cells with normal culture and anoxia/reoxygenation injury.

METHODS: A human intestinal cell monolayer (Caco-2) was used as the in vitro model of human small intestine and cephalexin as the model substrate for dipeptide transporter (PepT1). Caco-2 cells grown on Transwell membrane filters were preincubated in the presence of rhGH in the culture medium for 4 d, serum was withdrawn from monolayers for 24 h before each experiment. The transport experiments of cephalexin across apical membromes were then conducted; Caco-2 cells grown on multiple well dishes (24 pore) with normal culture or anoxia/reoxygenation injury were preincubated with rhGH as above and uptake of cephalexin was then measured.

RESULTS: The transport and uptake of cephelaxin across apical membranes of Caco-2 cells after preincubation with rhGH were significantly increased compared with controls (P = 0.045, 0.0223). Also, addition of rhGH at physiological concentration (34 nM) to incubation medium greatly stimulates cephalexin uptake by anoxia/reoxygenation injuried Caco-2 cells (P = 0.0116), while the biological functions of PepT1 in injured Caco-2 cells without rhGH were markedly downregulated. Northern blot analysis showed that the level of PepT1 mRNA of rhGH-treated injured Caco-2 cells was greatly increased compared to controls.

CONCLUSION: The present results of rhGH stimulating the uptake and transport of cephalexin indicated that rhGH greatly upregulates the physiological effects of dipeptide transporters of Caco-2 cells. The alteration in the gene expression may be a mechanism of regulation of PepT1. In addition, Caco-2 cells take up cephalexin by the Proton-dependent dipeptide transporters that closely resembles the transporters present in the intestine. Caco-2 cells represent an ideal cellular model for future studies of the dipeptide transporter.

Keywords: $[Keywords]