Published online Sep 7, 2024. doi: 10.3748/wjg.v30.i33.3810
Revised: July 23, 2024
Accepted: July 26, 2024
Published online: September 7, 2024
Processing time: 104 Days and 19.1 Hours
Cancer cell dormancy (CCD) in colorectal cancer (CRC) poses a significant challenge to effective treatment. In CRC, CCD contributes to tumour recurrence, drug resistance, and amplifying the disease's burden. The molecular mechanisms governing CCD and strategies for eliminating dormant cancer cells remain largely unexplored. Therefore, understanding the molecular mechanisms governing dormancy is crucial for improving patient outcomes and developing targeted therapies. This editorial highlights the complex interplay of signalling pathways and factors involved in colorectal CCD, emphasizing the roles of Hippo/YAP, pluripotent transcription factors such as NANOG, HIF-1α signalling, and Notch signalling pathways. Additionally, ERK/p38α/β/MAPK pathways, AKT signalling pathway, and Extracellular Matrix Metalloproteinase Inducer, along with some potential less explored pathways such as STAT/p53 switch and canonical and non-canonical Wnt and SMAD signalling, are also involved in promoting colorectal CCD. Highlighting their clinical significance, these findings may offer the potential for identifying key dormancy regulator pathways, improving treatment strategies, surmounting drug resistance, and advancing personalized medicine approaches. Moreover, insights into dormancy mecha
Core Tip: Colorectal cancer (CRC) cell dormancy drives therapeutic resistance, recurrence, and metastasis. Key molecular pathways involved in CRC dormancy include Hippo/YAP, NANOG, HIF-1α, Notch, ERK/MAPK, AKT, Wnt, and SMAD. Dysregulation of these pathways promotes dormancy. After re-entering active tumor state following dormancy, these cancer cells become more aggressive and metastasize quickly. The mechanisms behind CRC dormancy are largely unexplored. This editorial summarizes these pathways and their interactions, highlighting the identification of predictive biomarkers crucial for developing targeted therapies, overcoming drug resistance, and enhancing personalized treatments and patient outcomes.