Published online Dec 14, 2023. doi: 10.3748/wjg.v29.i46.6060
Peer-review started: September 29, 2023
First decision: October 16, 2023
Revised: October 24, 2023
Accepted: November 17, 2023
Article in press: November 17, 2023
Published online: December 14, 2023
Processing time: 74 Days and 18.5 Hours
Mesenchymal stem cells (MSCs) exert anti-oncogenic effects via exosomes containing non-coding RNA (ncRNA), which play important roles in tumor biology. Our preliminary study identified the interaction of the ncRNA hsa_
To identify the clinical significance, functional implications, and mechanisms of circ563 in HCC.
The expression levels of miR-148a-3p and MTF-1 in exosomes derived from MSC and HCC cells were compared, and their effects on HCC cells were assessed. Using a dual-luciferase reporter assay, miR-148a-3p was identified as an asso
The silencing of circ563 blocked the HCC cell proliferation and invasion and induced apoptosis. Co-culturing of HCC cells with MSC-derived exosomes following circ563 overexpression promoted cell proliferation and metastasis and elicited changes in miR-148a-3p and MTF-1 expression. The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or MTF-1 depletion. Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth by upregulating the ex
MSCs may exhibit anti-HCC activity through the exosomal circ563/miR-148a-3p/MTF-1 pathway, while exosomes can transmit circ563 to promote oncogenic behavior by competitively binding to miR-148a-3p to activate MTF-1.
Core Tip: We identified the functional implications and mechanisms of exosomal hsa_circ_0000563 (circ563) in hepatocellular carcinoma (HCC). Mesenchymal stem cells suppressed HCC proliferation and invasion via their exosomes. The circ563 interacts with miR-148a-3p, a molecule involved in HCC progression, and both are identified at different levels in exosomes. The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or depletion of metal-regulatory transcription factor-1 (MTF-1). Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth via MTF-1 upregulation. Our findings provide new insights into circ563/miR-148a-3p/MTF-1 signaling as a potential therapeutic target for HCC.