Copyright
©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
Thioridazine reverses trastuzumab resistance in gastric cancer by inhibiting S-phase kinase associated protein 2-mediated aerobic glycolysis
Zheng-Yan Yang, Yi-Wei Zhao, Jing-Rui Xue, Ran Guo, Zhi Zhao, Han-Di Liu, Zhi-Guang Ren, Ming Shi
Zheng-Yan Yang, Ran Guo, Han-Di Liu, Zhi-Guang Ren, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China
Yi-Wei Zhao, Jing-Rui Xue, Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, Henan Province, China
Zhi Zhao, Department of Pathology, Henan University-affiliated Zhengzhou Yihe Hospital, Zhengzhou 450000, Henan Province, China
Zhi-Guang Ren, Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital, Henan University, Kaifeng 475004, Henan Province, China
Ming Shi, Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
Ming Shi, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
Co-first authors: Zheng-Yan Yang and Yi-Wei Zhao.
Co-corresponding authors: Zhi-Guang Ren and Ming Shi.
Author contributions: Yang ZY drafted the manuscript and conducted the experiments of immunoblotting, qPCR, and apoptosis analysis in this study; Zhao YW completed the glucose metabolism analysis and animal experiments; Xue JR contributed to the CCK-8 assay and animal experiments; Guo R assisted in the construction and amplification of recombinant plasmid vectors; Liu HD participated in the data collection of docking; Zhao Z assisted in immunohistochemical analysis of xenograft tumor tissue samples; Ren ZG supervised the experiments, corrected the data, and revised the manuscript; Shi M conceived and designed the main content of this study and was responsible for analyzing the research results; all authors contributed to the article and approved the submitted version.
Supported by Youth Fund of National Natural Science Foundation of China, No. 81803575, and No. 31902287; Kaifeng Science and Technology Development Plan Project, No. 2203008; Key Specialized Research and Promotion Project of Henan Province in 2023, No. 232102311205; Henan Medical Science and Technology Research Program Project, No. LHGJ20210801; College Students Innovation and Entrepreneurship Training Program of Henan University, No. 20231022007.
Institutional review board statement: The study was reviewed and approved by the Ethics Committee of the Medical School of Henan University (HUSOM2022-452).
Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Medical School of Henan University (protocol number: HUSOM2022-439).
Conflict-of-interest statement: The authors declare no conflict of interest.
Data sharing statement: Relevant research data have been presented in the text. All data will be provided upon request if necessary.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
https://creativecommons.org/Licenses/by-nc/4.0/ Corresponding author: Zhi-Guang Ren, Doctor, Associate Professor, Department of Pathology, School of Basic Medical Science, Henan University, No. 1 Jinming Street, Kaifeng 475004, Henan Province, China.
renzhiguang66@outlook.com
Received: September 17, 2023
Peer-review started: September 17, 2023
First decision: October 8, 2023
Revised: October 19, 2023
Accepted: November 17, 2023
Article in press: November 17, 2023
Published online: December 7, 2023
Processing time: 74 Days and 14.9 Hours
BACKGROUND
Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2 (HER-2)-positive gastric cancer (GC). However, the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance. While S-phase kinase associated protein 2 (Skp2) overexpression has been implicated in the malignant progression of GC, its role in regulating trastuzumab resistance in this context remains uncertain. Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products, there has been a lack of successful commercialization of drugs specifically targeting Skp2.
AIM
To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.
METHODS
Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells. Q-PCR, western blot, and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression. A cell counting kit-8 assay, flow cytometry, a amplex red glucose/glucose oxidase assay kit, and a lactate assay kit were utilized to measure the proliferation, apoptosis, and glycolytic activity of GC cells in vitro. A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.
RESULTS
The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab. Thioridazine demonstrated the ability to directly bind to Skp2, resulting in a reduction in Skp2 expression at both the transcriptional and translational levels. Moreover, thioridazine effectively inhibited cell proliferation, exhibited antiapoptotic properties, and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways. The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo, surpassing the efficacy of either monotherapy.
CONCLUSION
Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance, particularly when used in conjunction with lapatinib. This compound has potential benefits for patients with Skp2-proficient tumors.
Core Tip: S-phase kinase-interacting protein 2 (Skp2) has been shown to be a reliable prognostic indicator of unfavorable outcomes for gastric cancer (GC). However, no agents specifically targeting Skp2 have been successfully developed. In this study, we proved that thioridazine restores the sensitivity of GC cells to trastuzumab both in vivo and in vitro by inhibiting Skp2-mediated glycolysis. Furthermore, the combination of thioridazine and lapatinib exhibits enhanced inhibitory effects compared with either monotherapy on the growth and survival of trastuzumab-resistant GC cells. Overall, this study suggests the potential of a thioridazine-based therapy to overcome trastuzumab resistance in human epidermal growth factor receptor 2-positive GC by targeting Skp2.