Published online May 14, 2022. doi: 10.3748/wjg.v28.i18.1981
Peer-review started: January 30, 2022
First decision: February 24, 2022
Revised: February 28, 2022
Accepted: March 26, 2022
Article in press: March 26, 2022
Published online: May 14, 2022
Processing time: 101 Days and 23.5 Hours
Fusobacterium nucleatum (F. nucleatum) has long been known to cause oppo
To explore its potential causative role in CRC development, we evaluated the colon pathology, mucosa barrier, colon microbiota and host transcriptome profile after F. nucleatum infection in an azoxymethane/dextran sulfate sodium salt (AOM/DSS) mouse model.
Three groups of mice were compared to reveal the differences, i.e., the control, AOM/DSS-induced CRC and AOM/DSS-FUSO infection groups.
Both the AOM/DSS and AOM/DSS-FUSO groups exhibited a significantly reduced body weight and increased tumor numbers than the control group, and AOM/DSS mice with F. nucleatum infection showed the highest tumor formation ratio among the three groups. Moreover, the colon pathology was the most serious in the AOM/DSS-FUSO group. We found that the structure of the colon microbiota changed considerably after F. nucleatum infection; striking differences in mucosal microbial population patterns were observed between the AOM/DSS-FUSO and AOM/DSS groups, and inflammation-inducing bacteria were enriched in the mucosal microbiota in the AOM/DSS-FUSO group. By comparing intestinal transcriptomics data from AOM vs AOM/DSS-FUSO mice, we showed that transcriptional activity was strongly affected by dysbiosis of the gut microbiota. The most microbiota-sensitive genes were oncogenes in the intestine, and the cyclic adenosine monophosphate signaling pathway, neuroactive ligand–receptor interaction, PPAR signaling pathway, retinol metabolism, mineral absorption and drug metabolism were highly enriched in the AOM/DSS-FUSO group. Additionally, we showed that microbial dysbiosis driven by F. nucleatum infection enriched eight taxa belonging to Proteobacteria, which correlates with increased expression of oncogenic genes.
Our study demonstrated that F. nucleatum infection altered the colon mucosal microbiota by enriching pathogens related to the development of CRC, providing new insights into the role of F. nucleatum in the oncogenic microbial environment of the colon.
Core Tip: Fusobacterium nucleatum (F. nucleatum) has long been known to cause oppo