Published online Nov 28, 2021. doi: 10.3748/wjg.v27.i44.7687
Peer-review started: July 29, 2021
First decision: August 19, 2021
Revised: September 5, 2021
Accepted: November 13, 2021
Article in press: November 13, 2021
Published online: November 28, 2021
Processing time: 119 Days and 5.2 Hours
Studies correlating specific genetic mutations and treatment response are ongoing to establish an effective treatment strategy for gastric cancer (GC). To facilitate this research, a cost- and time-effective method to analyze the mutational status is necessary. Deep learning (DL) has been successfully applied to analyze hematoxylin and eosin (H and E)-stained tissue slide images.
To test the feasibility of DL-based classifiers for the frequently occurring mutations from the H and E-stained GC tissue whole slide images (WSIs).
From the GC dataset of The Cancer Genome Atlas (TCGA-STAD), wild-type/mutation classifiers for CDH1, ERBB2, KRAS, PIK3CA, and TP53 genes were trained on 360 × 360-pixel patches of tissue images.
The area under the curve (AUC) for the receiver operating characteristic (ROC) curves ranged from 0.727 to 0.862 for the TCGA frozen WSIs and 0.661 to 0.858 for the TCGA formalin-fixed paraffin-embedded (FFPE) WSIs. The performance of the classifier can be improved by adding new FFPE WSI training dataset from our institute. The classifiers trained for mutation prediction in colorectal cancer completely failed to predict the mutational status in GC, indicating that DL-based mutation classifiers are incompatible between different cancers.
This study concluded that DL could predict genetic mutations in H and E-stained tissue slides when they are trained with appropriate tissue data.
Core Tip: Recently, deep learning approach has been implemented to predict the mutational status from hematoxylin and eosin (H and E)-stained tissue images of diverse tumors. The aim of our study was to evaluate the feasibility of classifiers for mutations in the CDH1, ERBB2, KRAS, PIK3CA, and TP53 genes in gastric cancer tissues. The area under the curves for receiver operating characteristic curves ranged from 0.727 to 0.862 for the The Cancer Genome Atlas (TCGA) frozen tissues and 0.661 to 0.858 for the TCGA formalin-fixed paraffin-embedded tissues. This study confirmed that deep learning-based classifiers can predict major mutations from the H and E-stained gastric cancer whole slide images when they are trained with appropriate data.