Published online Jun 7, 2021. doi: 10.3748/wjg.v27.i21.2910
Peer-review started: February 13, 2021
First decision: March 14, 2021
Revised: April 1, 2021
Accepted: April 20, 2021
Article in press: April 20, 2021
Published online: June 7, 2021
Processing time: 102 Days and 18.8 Hours
Persistent liver inflammatory damage is the main risk factor for developing liver fibrosis, cirrhosis, and even hepatocellular carcinoma in chronic hepatitis B (CHB) patients. Thus, accurate prediction of the degree of liver inflammation is a high priority and a growing medical need.
To build an effective and robust non-invasive model for predicting hepatitis B-related hepatic inflammation.
A total of 650 treatment-naïve CHB (402 HBeAg-positive and 248 HBeAg-negative) patients who underwent liver biopsy were enrolled in this study. Histological inflammation grading was assessed by the Ishak scoring system. Serum quantitative hepatitis B core antibody (qAnti-HBc) levels and 21 immune-related inflammatory factors were measured quantitatively using a chemiluminescent microparticle immunoassay. A backward feature elimination (BFE) algorithm utilizing random forest (RF) was used to select optional features and construct a combined model. The diagnostic abilities of the model or variables were evaluated based on the estimated area under the receiver operating characteristics curve (AUROC) and compared using the DeLong test.
Four features were selected to predict moderate-to-severe inflammation in CHB patients using the RF-BFE method. These predictive features included qAnti-HBc, ALT, AST, and CXCL11. Spearman’s correlation analysis indicated that serum qAnti-HBc, ALT, AST, and CXCL11 levels were positively correlated with the histology activity index (HAI) score. These selected features were incorporated into the model to establish a novel model named I-3A index. The AUROC [0.822; 95% confidence interval (CI): 0.790-0.851] of the I-3A index was significantly increased compared with qAnti-HBc alone (0.760, 95%CI: 0.724-0.792, P < 0.0001) in all CHB patients. The use of an I-3A index cutoff value of 0.41 produced a sensitivity of 69.17%, specificity of 81.44%, and accuracy of 73.8%. Additionally, the I-3A index showed significantly improved diagnostic performance for predicting moderate-to-severe inflammation in HBeAg-positive and HBeAg-negative CHB patients (0.829, 95%CI: 0.789-0.865 and 0.810, 95%CI: 0.755-0.857, respectively).
The selected features of the I-3A index constructed using the RF-BFE algorithm can effectively predict moderate-to-severe liver inflammation in CHB patients.
Core Tip: We aimed to propose an effective backward feature elimination algorithm utilizing random forest to select optimal features and construct a novel non-invasive model for predicting hepatitis B-related hepatic inflammation based on a large, multicenter cohort. The results indicated that the I-3A index constructed based on the selected features significantly improved the diagnostic efficiency of quantitative hepatitis B core antibody alone for predicting moderate-to-severe inflammation. Additionally, the I-3A index showed high diagnostic accuracy for moderate-to-severe inflammation in both HBeAg-positive and HBeAg-negative chronic hepatitis B patients.