Published online May 7, 2021. doi: 10.3748/wjg.v27.i17.2015
Peer-review started: January 18, 2021
First decision: February 9, 2021
Revised: February 22, 2021
Accepted: March 31, 2021
Article in press: March 31, 2021
Published online: May 7, 2021
Processing time: 100 Days and 17.8 Hours
Liver cancer is one of the most common malignant tumors, and ranks as the fourth leading cause of cancer death worldwide. Microvascular invasion (MVI) is considered one of the most important factors for recurrence and poor prognosis of liver cancer. Thus, accurately identifying MVI before surgery is of great importance in making treatment strategies and predicting the prognosis of patients with hepatocellular carcinoma (HCC). Radiomics as an emerging field, aims to utilize artificial intelligence software to develop methods that may contribute to cancer diagnosis, treatment improvement and evaluation, and better prediction.
To investigate the predictive value of computed tomography radiomics for MVI in solitary HCC ≤ 5 cm.
A total of 185 HCC patients, including 122 MVI negative and 63 MVI positive patients, were retrospectively analyzed. All patients were randomly assigned to the training group (n = 124) and validation group (n = 61). A total of 1351 radiomic features were extracted based on three-dimensional images. The diagnostic performance of the radiomics model was verified in the validation group, and the Delong test was applied to compare the radiomics and MVI-related imaging features (two-trait predictor of venous invasion and radioge
A total of ten radiomics features were finally obtained after screening 1531 features. According to the weighting coefficient that corresponded to the features, the radiomics score (RS) calculation formula was obtained, and the RS score of each patient was calculated. The radiomics model exhibited a better correction and identification ability in the training and validation groups [area under the curve: 0.72 (95% confidence interval: 0.58-0.86) and 0.74 (95% confidence interval: 0.66-0.83), respectively]. Its prediction performance was significantly higher than that of the image features (P < 0.05).
Computed tomography radiomics has certain predictive value for MVI in solitary HCC ≤ 5 cm, and the predictive ability is higher than that of image features.
Core Tip: Microvascular invasion (MVI) is considered one of the most important factors for recurrence and poor prognosis of liver cancer. Thus, accurately identifying MVI before surgery is of great importance in making treatment strategies and predicting the prognosis of patients with hepatocellular carcinoma (HCC). This study showed that radiomics as an emerging method at present had a good diagnostic efficiency and exhibited better accuracy in predicting MVI than image features, indicating that radiomics is a more suitable method in predicting MVI in solitary HCC ≤ 5 cm.