Published online Apr 21, 2021. doi: 10.3748/wjg.v27.i15.1578
Peer-review started: December 1, 2020
First decision: December 21, 2020
Revised: January 22, 2021
Accepted: February 24, 2021
Article in press: February 24, 2021
Published online: April 21, 2021
Processing time: 133 Days and 18.6 Hours
Colon cancer cell lines are widely used for research and for the screening of drugs that specifically target the stem cell compartment of colon cancers. It was reported that colon cancer carcinoma specimens contain a subset of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)-expressing stem cells, these so-called “tumour-initiating” cells, reminiscent in their properties of the normal intestinal stem cells (ISCs), may explain the apparent heterogeneity of colon cancer cell lines. Also, colon cancer is initiated by aberrant Wnt signaling in ISCs known to express high levels of LGR5. Furthermore, in vivo reports demonstrate the clonal expansion of intestinal adenomas from a single LGR5-expressing cell.
To investigate whether colon cancer cell lines contain cancer stem cells and to characterize these putative cancer stem cells.
A portable fluorescent reporter construct based on a conserved fragment of the LGR5 promoter was used to isolate the cell compartments expressing different levels of LGR5 in two widely used colon cancer cell lines (Caco-2 and LoVo). These cells were then characterized according to their proliferation capacity, gene expression signatures of ISC markers, and their tumorigenic properties in vivo and in vitro.
The data revealed that the LGR5 reporter can be used to identify and isolate a classical intestinal crypt stem cell-like population from the Caco-2, but not from the LoVo, cell lines, in which the cancer stem cell population is more akin to B lymphoma Moloney murine leukemia virus insertion region 1 homolog (+4 crypt) stem cells. This sub-population within Caco-2 cells exhibits an intestinal cancer stem cell gene expression signature and can both self-renew and generate differentiated LGR5 negative progeny. Our data also show that cells expressing high levels of LGR5/enhanced yellow fluorescent protein (EYFP) from this cell line exhibit tumorigenic-like properties in vivo and in vitro. In contrast, cell compartments of LoVo that are expressing high levels of LGR5/EYFP did not show these stem cell-like properties. Thus, cells that exhibit high levels of LGR5/EYFP expression represent the cancer stem cell compartment of Caco-2 colon cancer cells, but not LoVo cells.
Our findings highlight the presence of a spectrum of different ISC-like compartments in different colon cancer cell lines. Their existence is an important consideration for their screening applications and should be taken into account when interpreting drug screening data. We have generated a portable LGR5-reporter that serves as a valuable tool for the identification and isolation of different colon cancer stem cell populations in colon cancer lines.
Core Tip: The intestinal epithelium harbors two distinct pools of putative stem cells, the leucine-rich repeat-containing G protein-coupled receptor 5+ (LGR5) stem cell population and the B lymphoma Moloney murine leukemia virus insertion region 1 homolog+ stem cell population. Colon cancer cell lines such as Caco-2 and LoVo are extensively used in colon cancer research, and express high levels of LGR5. Here, we aimed to investigate whether colon cancer cell lines contain cancer stem cells and characterized these cells. Using an LGR5 reporter, we characterized LGR5+ cells and revealed that Caco-2 cell line contains a classical intestinal stem cell-like population (LGR5+). However, in LoVo cell lines, stem cell-like population is more akin to the B lymphoma Moloney murine leukemia virus insertion region 1 homolog+ stem cells.