Basic Study
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Nov 21, 2020; 26(43): 6810-6821
Published online Nov 21, 2020. doi: 10.3748/wjg.v26.i43.6810
Effects of Yue-Bi-Tang on water metabolism in severe acute pancreatitis rats with acute lung-kidney injury
Jing Hu, Yu-Mei Zhang, Yi-Fan Miao, Lv Zhu, Xiao-Lin Yi, Huan Chen, Xi-Jing Yang, Mei-Hua Wan, Wen-Fu Tang
Jing Hu, Yi-Fan Miao, Lv Zhu, Xiao-Lin Yi, Huan Chen, Mei-Hua Wan, Wen-Fu Tang, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
Yu-Mei Zhang, Department of Traditional Chinese Medicine, Xiang’an Hospital of Xiamen University, Xiamen 361101, Fujian Province, China
Xi-Jing Yang, Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
Author contributions: Tang WF designed the study; Hu J, Zhang YM, Zhu L, Miao YF, Chen H, Yi XL, Yang XJ, and Wan MH were responsible for the acquisition of data; Hu J and Zhang YM were responsible for the analysis and interpretation of data and the drafting of the paper; Tang WF was responsible for critical revisions of the paper; Tang WF and Wan MH obtained funding and provided study supervision; all authors read and approved the final manuscript.
Supported by National Natural Science Foundation of China (General Program), No. 81873203 and No. 81774160.
Institutional review board statement: The study was approved by the Animal Ethical Committee of West China Hospital.
Institutional animal care and use committee statement: The study was reviewed and approved by the University Guidelines and the Animal Care Committee Guidelines of West China Hospital (Chengdu, China) (protocol number, 2018167A).
Conflict-of-interest statement: None of the authors have any conflicts of interest to declare.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The manuscript has been revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Wen-Fu Tang, PhD, Professor, Department of Integrative Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan Province, China. tangwf@scu.edu.cn
Received: May 27, 2020
Peer-review started: May 27, 2020
First decision: July 29, 2020
Revised: August 7, 2020
Accepted: August 26, 2020
Article in press: August 26, 2020
Published online: November 21, 2020
Abstract
BACKGROUND

The complications acute lung injury and acute kidney injury caused by severe inflammation are the main reasons of high mortality of severe acute pancreatitis (SAP). These two complications can both lead to water metabolism and acid-base balance disorders, which could act as additional critical factors affecting the disease trend. Aquaporins (AQPs), which can regulate the transmembrane water transport, have been proved to participate in the pathophysiological process of SAP and the associated complications, such as acute lung injury and acute kidney injury. Thus, exploring herbs that can effectively regulate the expression of AQP in SAP could benefit the prognosis of this disease.

AIM

To determine whether Yue-Bi-Tang (YBT) can regulate the water metabolism in rats with severe acute pancreatitis via regulating the expression of aquaporins.

METHODS

Sprague-Dawley rats were randomly divided into three groups, sham operation group (SOG), model group (MG), and treatment group (TG). SAP was induced with 3.5% sodium taurocholate in the MG and TG. Rats in the TG were administered with YBT while SOG and MG rats were given the same volume of saline. Blood and tissue samples were harvested to detect serum inflammatory cytokines, histopathological changes, malondialdehyde and superoxide dismutase in the lung, and protein and mRNA expression of kidney injury molecule-1, α-smooth muscle actin, and vimentin in the kidney, and AQP1 and 4 in the lung, pancreas, and kidney.

RESULTS

The serum interleukin-10, tumor necrosis factor α, and creatinine levels were higher in the MG than in the SOG. Tumor necrosis factor α level in the TG was lower than that in the MG. Malondialdehyde level in lung tissues was higher than in the SOG. The pathological scores and edema scores of the pancreas, lung, and kidney tissues in the MG were all higher than those in the SOG and TG. The protein expression of AQP4 in lung tissues and AQP1 in kidney tissues in the MG were higher than those in the SOG and TG. The expression of vimentin was significantly higher in the MG than in the SOG. The expression of AQP1 mRNA in the lung and kidney, and AQP4 mRNA in the kidney was up-regulated in the MG compared to the SOG.

CONCLUSION

YBT might regulate water metabolism to reduce lung and kidney edema of SAP rats via decreasing AQP expression, and alleviate the tissue inflammatory injury.

Keywords: Yue-Bi-Tang, Aquaporins, Sever acute pancreatitis, Acute lung injury, Acute kidney injury, Water metabolism

Core Tip: This is the first study to verify the effects of Yue-Bi-Tang (YBT) in regulating water metabolism and reducing tissue injury in rats with severe acute pancreatitis complicated with acute lung injury and acute kidney injury. We demonstrated the protective effect of YBT on lung and renal injury associated with severe acute pancreatitis from two aspects, alleviation of inflammatory injury and reduction of edema. Furthermore, the edematous elimination effect of YBT is achieved by regulating water metabolism via decreasing the expression of aquaporins.