Published online Feb 7, 2019. doi: 10.3748/wjg.v25.i5.584
Peer-review started: October 25, 2018
First decision: November 29, 2018
Revised: January 10, 2019
Accepted: January 18, 2019
Article in press: January 18, 2019
Published online: February 7, 2019
Processing time: 99 Days and 1.3 Hours
Claudin-7, one of the important components of cellular tight junctions, is currently considered to be expressed abnormally in colorectal inflammation and colorectal cancer. However, there is currently no effective animal model to study its specific mechanism. Therefore, we constructed three lines of Claudin-7 knockout mice using the Cre/LoxP system.
To determine the function of the tumor suppressor gene Claudin-7 by generating three lines of Claudin-7 gene knockout mice.
We crossed Claudin-7-floxed mice with CMV-Cre, vil1-Cre, and villin-CreERT2 transgenic mice, and the offspring were self-crossed to obtain conventional Claudin-7 knockout mice, conditional (intestinal specific) Claudin-7 knockout mice, and inducible conditional Claudin-7 knockout mice. Intraperitoneal injection of tamoxifen into the inducible conditional Claudin-7 knockout mice can induce the knockout of Claudin-7. PCR and agarose gel electrophoresis were used to identify mouse genotypes, and Western blot was used to confirm the knockout of Claudin-7. The mental state, body length, and survival time of these mice were observed. The dying mice were sacrificed, and hematoxylin-eosin (HE) staining and immunohistochemical staining were performed to observe changes in intestinal structure and proliferation markers.
We generated Claudin-7-floxed mice and three lines of Claudin-7 gene knockout mice using the Cre/LoxP system successfully. Conventional and intestinal specific Claudin-7 knockout mice were stunted and died during the perinatal period, and intestinal HE staining in these mice revealed mucosal gland structure disappearance and connective tissue hyperplasia with extensive inflammatory cell infiltration. The inducible conditional Claudin-7 knockout mice had a normal phenotype at birth, but after the induction with tamoxifen, they exhibited a dying state. Intestinal HE staining showed significant inflammatory cell infiltration, and atypical hyperplasia and adenoma were also observed. Intestinal immunohistochemistry analysis showed abnormal expression and distribution of Ki67, and the normal intestinal proliferation balance was disrupted. The intestinal crypt size in inducible conditional Claudin-7 knockout mice was increased compared with control mice (small intestine: 54.1 ± 2.96 vs 38.4 ± 1.63; large intestine: 44.7 ± 1.93 vs 27.4 ± 0.60; P < 0.001).
The knockout of Claudin-7 in vivo causes extensive inflammation, atypical hyperplasia, and adenoma in intestinal tissue as well as animal death in mice. Claudin-7 may act as a tumor suppressor gene in the development of colorectal cancer.
Core tip: The intestinal tract of conventional and intestinal specific Claudin-7 knockout mice was characterized by extensive and severe inflammation. The development of inducible conditional knockout mice can control the knockout of Claudin-7 in a temporal and compartment specific manner and prolong the survival time of mice, which exhibited atypical hyperplasia and adenoma in the intestine. This study revealed the inhibitory role that Claudin-7 plays in colorectal inflammation and colorectal cancer.