Published online Feb 7, 2019. doi: 10.3748/wjg.v25.i5.552
Peer-review started: October 14, 2018
First decision: November 1, 2018
Revised: December 19, 2018
Accepted: December 27, 2018
Article in press: December 27, 2018
Published online: February 7, 2019
Processing time: 111 Days and 2 Hours
Despite their high prevalence, lack of understanding of the exact pathophysiology of the functional gastrointestinal disorders has restricted us to symptomatic diagnostic tools and therapies. Complex mechanisms underlying the disturbances in the bidirectional communication between the gastrointestinal tract and the brain have a vital role in the pathogenesis and are key to our understanding of the disease phenomenon. Although we have come a long way in our understanding of these complex disorders with the help of studies on animals especially rodents, there need to be more studies in humans, especially to identify the therapeutic targets. This review study looks at the anatomical features of the gut-brain axis in order to discuss the different factors and underlying molecular mechanisms that may have a role in the pathogenesis of functional gastrointestinal disorders. These molecules and their receptors can be targeted in future for further studies and possible therapeutic interventions. The article also discusses the potential role of artificial intelligence and machine learning and its possible role in our understanding of these scientifically challenging disorders.
Core tip: The multifactorial nature of functional gastrointestinal disorders makes the diagnosis challenging. The identification of pathogenic microbiome signatures, combined with demographical, immunologic and neuroimaging findings can be encoded into machine learning algorithms which may help identify trends and patterns that can be studied to further our understanding of these disorders. These patterns can help determine the causality or can guide further research.