Published online Nov 14, 2019. doi: 10.3748/wjg.v25.i42.6311
Peer-review started: August 19, 2019
First decision: September 10, 2019
Revised: October 16, 2019
Accepted: November 1, 2019
Article in press: November 1, 2019
Published online: November 14, 2019
Processing time: 86 Days and 18.9 Hours
Studies have reported that microRNA-30c (miR-30c) has vital functions in the development and progression of multiple cancers.
To investigate the clinical significance and role of miR-30c in pancreatic cancer.
MiR-30c and twinfilin 1 (TWF1) expression levels were analyzed in Gene Expression Omnibus datasets and validated in human pancreatic cancer by quantitative real-time polymerase chain reaction (RT-qPCR). The effects of miR-30c on pancreatic cancer cell growth, apoptosis, and cell cycle were evaluated by CCK-8 and flow cytometry assays. Furthermore, the in vivo effects were investigated using a subcutaneous xenograft experiment. Target gene prediction software and luciferase reporter assays were used to identify TWF1 as a direct target of miR-30c.
The expression of miR-30c was significantly decreased in pancreatic cancer tissues and associated with survival. Gain- and loss-of-function assays showed that miR-30c suppressed pancreatic cancer cell proliferation in vitro and in vivo. RT-qPCR, Western blot, and luciferase reporter assays showed that miR-30c directly targeted TWF1. The expression level of miR-30c was negatively correlated with TWF1 expression in pancreatic cancer tissues. Furthermore, the effects of ectopic miR-30c were rescued by TWF1 overexpression.
Our results identified the role of the miR-30c/TWF1 axis in pancreatic cancer progression and demonstrated that miR-30c might serve as a prognostic biomarker and therapeutic target for pancreatic cancer.
Core tip: Studies have shown that miR-30c exerts vital roles in the oncogenesis of various cancers. However, its expression and role in pancreatic cancer remain unknown. In this study, the expression levels of miR-30c and twinfilin 1 were mined in Gene Expression Omnibus datasets and detected in clinical samples. The relationship of miR-30c expression with clinicopathological factors of pancreatic cancer patients was analyzed. The effect of miR-30c on pancreatic cancer cell proliferation and the underlying regulatory mechanism were investigated. Our study suggested that miR-30c may serve as a prognostic biomarker and therapeutic target for pancreatic cancer.