Published online Jul 14, 2019. doi: 10.3748/wjg.v25.i26.3359
Peer-review started: May 18, 2019
First decision: May 30, 2019
Revised: June 2, 2019
Accepted: June 8, 2019
Article in press: June 8, 2019
Published online: July 14, 2019
Processing time: 57 Days and 20.4 Hours
Aptamers are a class of single oligonucleotide molecules (DNA or RNA) that are screened from random DNA or RNA oligonucleotide chain libraries by the systemic evolution of ligands by exponential enrichment technology. The selected aptamers are capable of specifically binding to different targeting molecules, which is achieved by the three-dimensional structure of aptamers. Aptamers are similar in function to monoclonal antibodies, and therefore, they are also referred to as "chemical antibodies". Due to their high affinity and specificity and low immunogenicity, aptamers are topics of intense interest in today's biological targeting research especially in tumor research. They not only have high potential for clinical advances in tumor targeting detection but also are highly promising as targeted tumor drug carriers for use in tumor therapy. Various experimental studies have shown that aptamer-based diagnostic and therapeutic methods for liver cancer have great potential for application. This paper summarizes the structure, characteristics, and screening methods of aptamers and reviews the recent research progress on nucleic acid aptamers in the targeted diagnosis and treatment of liver cancer.
Core tip: For liver cancer, conventional diagnostic methods have low sensitivity, therapeutic drugs have great side effects, and tumor monitoring is difficult, which limit the diagnosis and treatment of liver cancer. However, the diagnosis and treatment of liver cancer based on aptamers have great application prospects. This review describes the screening of aptamers and reviews the recent advances on aptamers in the targeted diagnosis and treatment of liver cancer.