Basic Study
Copyright ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jul 7, 2019; 25(25): 3218-3230
Published online Jul 7, 2019. doi: 10.3748/wjg.v25.i25.3218
Nuclear magnetic resonance-based metabolomics and metabolic pathway networks from patient-matched esophageal carcinoma, adjacent noncancerous tissues and urine
Jia-Hao Liang, Yan Lin, Ting Ouyang, Wan Tang, Yao Huang, Wei Ye, Jia-Yun Zhao, Zhe-Ning Wang, Chang-Chun Ma
Jia-Hao Liang, Yan Lin, Ting Ouyang, Wan Tang, Yao Huang, Wei Ye, Jia-Yun Zhao, Zhe-Ning Wang, Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China
Chang-Chun Ma, Department of Radiation Oncology, Affiliated Tumor Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China
Author contributions: Lin Y conceived and designed the experiments; Liang JH and Lin Y contributed to NMR data acquisition; Liang JH, Ouyang T, Tang W and Huang Y analyzed the data; Lin Y wrote the paper; Ye W, Zhao JY and Wang ZN contributed to sample preparation; all authors approved the final version of the manuscript for publication.
Supported by the National Natural Science Foundation of China, No. 81471729 and No. 81101102; the Science and Technology and Planning Project of Guangdong Province, No. 2016A020216025; the Research Award Fund for Outstanding Young Teachers in Higher Education Institutions, Guangdong Province, No. YQ2015245; the National Natural Science Foundation of Guangdong Province, No. S2011010004973; the Department of Education of Guangdong Province, No. 2017KTSCX071.
Institutional review board statement: This study was reviewed and approved by the Second Affiliated Hospital, Shantou University Medical College Review Board (2018-44).
Informed consent statement: Informed consent was obtained from each subject prior to participation in this study.
Conflict-of-interest statement: The authors declare that they have no competing interests related to this study.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Yan Lin, PhD, Chief Doctor, Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, No. 69. Dongshabei Road, Shantou 515041, Guangdong Province, China. 994809889@qq.com
Telephone: +86-13502958156
Received: January 25, 2019
Peer-review started: January 25, 2019
First decision: February 26, 2019
Revised: May 13, 2019
Accepted: May 31, 2019
Article in press: June 1, 2019
Published online: July 7, 2019
Processing time: 162 Days and 21.5 Hours
Abstract
BACKGROUND

Several studies have demonstrated a correlation between esophageal cancer (EC) and perturbed urinary metabolomic profiles, but none has described the correlation between urine metabolite profiles and those of the tumor and adjacent esophageal mucosa in the same patient.

AIM

To investigate how urinary metabolic phenotypes were linked to the changes in the biochemical landscape of esophageal tumors.

METHODS

Nuclear magnetic resonance-based metabolomics were applied to esophageal tumor tissues and adjacent normal mucosal tissues alongside patient-matched urine samples.

RESULTS

Analysis revealed that specific metabolite changes overlapped across both metrics, including glucose, glutamate, citrate, glycine, creatinine and taurine, indicating that the networks for metabolic pathway perturbations in EC, potentially involved in but not limited to disruption of fatty acid metabolism, glucose and glycolytic metabolism, tricarboxylic acid cycle and glutaminolysis. Additionally, changes in most urinary biomarkers correlated with changes in biomarker candidates in EC tissues, implying enhanced energy production for rapid cell proliferation.

CONCLUSION

Overall, these associations provide evidence for distinct metabolic signatures and pathway disturbances between the tumor tissues and urine of EC patients, and changes in urinary metabolic signature could reflect reprogramming of the aforementioned metabolic pathways in EC tissues. Further investigation is needed to validate these initial findings using larger samples and to establish the underlying mechanism of EC progression.

Keywords: Esophageal cancer; Metabolites; Metabolic pathways; Nuclear magnetic resonance-based metabolomics; Tumor tissue; Urine

Core tip: Our research provides evidence for distinct metabolic signatures and metabolic pathway disturbances between the tumor tissues and urine of esophageal cancer patients, and changes in the urinary metabolic signature could reflect reprogramming of aforementioned metabolic pathways in esophageal tumor tissues.