Basic Study
Copyright ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Dec 7, 2018; 24(45): 5095-5108
Published online Dec 7, 2018. doi: 10.3748/wjg.v24.i45.5095
Effects of alkaline-electrolyzed and hydrogen-rich water, in a high-fat-diet nonalcoholic fatty liver disease mouse model
Karen Jackson, Noa Dressler, Rotem S Ben-Shushan, Ari Meerson, Tyler W LeBaron, Snait Tamir
Karen Jackson, Noa Dressler, Rotem S Ben-Shushan, Ari Meerson, Snait Tamir, Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kyriat Shmona 11016, Israel
Karen Jackson, Noa Dressler, Snait Tamir, Tel Hai College, Upper Galilee 12110, Israel
Tyler W LeBaron, Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 84005, Slovakia
Tyler W LeBaron, Molecular Hydrogen Institute, UT 48101, United States
Author contributions: Jackson K designed and coordinated the research analyzed the data and wrote the paper; Dressler N performed the majority of experiments and analyzed the data; Ben-Shushan RS performed the perfusion, and in vitro experiments; Meerson A designed and analyzed the PCR data, LeBaron TW analyzed the data and wrote the paper; Tamir S analyzed the data and contributed to the writing of the final draft.
Supported by Tel Hai College Research funding Grant, No. 25-2-14-114.
Correspondence author to: Karen Jackson, PhD, Senior Lecturer, Senior Researcher, Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, POB 831, Kyriat Shmona 11016, Israel. karen@migal.org.il
Telephone: +972-4-6953511 Fax: +972-4-6944980
Received: September 30, 2018
Peer-review started: September 30, 2018
First decision: October 23, 2018
Revised: October 31, 2018
Accepted: November 9, 2018
Article in press: November 9, 2018
Published online: December 7, 2018
Abstract
AIM

To identify the effect of hydrogen-rich water (HRW) and electrolyzed-alkaline water (EAW) on high-fat-induced non-alcoholic fatty acid disease in mice.

METHODS

Mice were divided into four groups: (1) Regular diet (RD)/regular water (RW); (2) high-fat diet (HFD)/RW; (3) RD/EAW; and (4) HFD/EAW. Weight and body composition were measured. After twelve weeks, animals were sacrificed, and livers were processed for histology and reverse-transcriptase polymerase chain reaction. A similar experiment was performed using HRW to determine the influence and importance of molecular hydrogen (H2) in EAW. Finally, we compared the response of hepatocytes isolated from mice drinking HRW or RW to palmitate overload.

RESULTS

EAW had several properties important to the study: (1) pH = 11; (2) oxidation-reduction potential of -495 mV; and (3) H2 = 0.2 mg/L. However, in contrast to other studies, there were no differences between the groups drinking EAW or RW in either the RD or HFD groups. We hypothesized that the null result was due to low H2 concentrations. Therefore, we evaluated the effects of RW and low and high HRW concentrations (L-HRW = 0.3 mg H2/L and H-HRW = 0.8 mg H2/L, respectively) in mice fed an HFD. Compared to RW and L-HRW, H-HRW resulted in a lower increase in fat mass (46% vs 61%), an increase in lean body mass (42% vs 28%), and a decrease in hepatic lipid accumulation (P < 0.01). Lastly, exposure of hepatocytes isolated from mice drinking H-HRW to palmitate overload demonstrated a protective effect from H2 by reducing hepatocyte lipid accumulation in comparison to mice drinking regular water.

CONCLUSION

H2 is the therapeutic agent in electrolyzed-alkaline water and attenuates HFD-induced nonalcoholic fatty liver disease in mice.

Keywords: Hydrogen-rich-water, Nonalcoholic fatty liver disease, Alkaline water, Metabolic syndrome, Molecular hydrogen, High-fat diet

Core tip: In this work, we compared the effects of two functional waters: Electrolyzed alkaline water and Hydrogen-rich water in a high-fat-diet-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Hydrogen-rich water (HRW) has potential for NAFLD treatment by attenuating hepatic lipid accumulation, inflammation, and CD36 expression. However, neither electrolyzed-alkaline water (EAW) nor HRW with a low H2 concentration had protective effects on NAFLD. Additionally, we demonstrated that H2 pretreatment has a protective effect by modifying gene expression. The results demonstrate that H2 has a surprisingly positive impact in preventing NAFLD in mice and is also the key agent responsible in EAW for these benefits.