Published online Sep 28, 2018. doi: 10.3748/wjg.v24.i36.4132
Peer-review started: March 25, 2018
First decision: April 18, 2018
Revised: April 24, 2018
Accepted: May 6, 2018
Article in press: May 6, 2018
Published online: September 28, 2018
Processing time: 185 Days and 0.3 Hours
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Core tip: Lysophosphatidic acid (LPA) is mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). The binding of LPA to its receptors LPA1-6 activates multiple cellular signaling pathways and leads to changes. Studies using genetically modified animals have begun to reveal the roles of LPA pathways in metabolic active tissues and organs. The present review summarized recent progresses in the studies of extracellular and intracellular LPA production pathways; the functions, structural and biochemical properties of ATX and LPA receptors. Furthermore, the potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are discussed.