Published online Sep 7, 2018. doi: 10.3748/wjg.v24.i33.3738
Peer-review started: May 27, 2018
First decision: July 4, 2018
Revised: July 9, 2018
Accepted: July 16, 2018
Article in press: July 16, 2018
Published online: September 7, 2018
Processing time: 103 Days and 11 Hours
Developing medicines for hemodynamic disorders that are characteristic of cirrhosis of the liver is a relevant problem in modern hepatology. The increase in hepatic vascular resistance to portal blood flow and subsequent hyperdynamic circulation underlie portal hypertension (PH) and promote its progression, despite the formation of portosystemic collaterals. Angiogenesis and vascular bed restructurization play an important role in PH pathogenesis as well. In this regard, strategic directions in the therapy for PH in cirrhosis include selectively decreasing hepatic vascular resistance while preserving or increasing portal blood flow, and correcting hyperdynamic circulation and pathological angiogenesis. The aim of this review is to describe the mechanisms of angiogenesis in PH and the methods of antiangiogenic therapy. The PubMed database, the Google Scholar retrieval system, and the reference lists from related articles were used to search for relevant publications. Articles corresponding to the aim of the review were selected for 2000-2017 using the keywords: “liver cirrhosis”, “portal hypertension”, “pathogenesis”, “angiogenesis”, and “antiangiogenic therapy”. Antiangiogenic therapy for PH was the inclusion criterion. In this review, we have described angiogenesis inhibitors and their mechanism of action in relation to PH. Although most of them were studied only in animal experiments, this selective therapy for abnormally growing newly formed vessels is pathogenetically reasonable to treat PH and associated complications.
Core tip: This review describes the role of angiogenesis in the pathogenesis of portal hypertension in liver cirrhosis and the prospects of antiangiogenic therapy. The analysis of the data showed that angiogenesis plays an important role in the pathogenesis of cirrhosis and accompanies portal hypertension, underlying its development and causing related complications. Although most of angiogenesis inhibitors were studied only in animal experiments, this selective therapy for abnormally growing newly formed vessels is pathogenetically reasonable to treat portal hypertension and associated complications.