Published online Jul 28, 2018. doi: 10.3748/wjg.v24.i28.3071
Peer-review started: April 10, 2018
First decision: April 26, 2018
Revised: May 17, 2018
Accepted: June 27, 2018
Article in press: June 27, 2018
Published online: July 28, 2018
Processing time: 108 Days and 19.4 Hours
Helicobacter pylori (H. pylori) is present in roughly 50% of the human population worldwide and infection levels reach over 70% in developing countries. The infection has classically been associated with different gastro-intestinal diseases, but also with extra gastric diseases. Despite such associations, the bacterium frequently persists in the human host without inducing disease, and it has been suggested that H. pylori may also play a beneficial role in health. To understand how H. pylori can produce such diverse effects in the human host, several studies have focused on understanding the local and systemic effects triggered by this bacterium. One of the main mechanisms by which H. pylori is thought to damage the host is by inducing local and systemic inflammation. However, more recently, studies are beginning to focus on the effects of H. pylori and its metabolism on the gastric and intestinal microbiome. The objective of this review is to discuss how H. pylori has co-evolved with humans, how H. pylori presence is associated with positive and negative effects in human health and how inflammation and/or changes in the microbiome are associated with the observed outcomes.
Core tip: This review focuses on discussing how Helicobacter pylori (H. pylori) has co-evolved with humans, potential mechanisms that may explain both positive and negative correlations in population-based studies between H. pylori infection and the development of several diseases, as well as how inflammation and/or changes in the microbiome might be linked to the respective outcomes. Our analysis of the literature reveals that human infection by H. pylori has a longstanding history, whereby the consequences therefore are extremely complex and not always detrimental to the human host. Thus, future research should focus on determining how potentially beneficial consequences of this interaction could be promoted all the while preventing the disease-causing effects in humans.