Published online Jun 7, 2018. doi: 10.3748/wjg.v24.i21.2261
Peer-review started: March 28, 2018
First decision: April 19, 2018
Revised: April 24, 2018
Accepted: April 26, 2018
Article in press: April 26, 2018
Published online: June 7, 2018
Processing time: 68 Days and 17.5 Hours
Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.
Core tip: Recently, it has been shown that hepatitis B virus (HBV) RNAs have diverse biological functions in the pathogenesis of HBV. HBV RNAs may work as sponges for host miRNAs and deregulate miRNA functions. Novel viral-host fusion RNA may be produced from HBV-DNA integration sites, which may also have pathological functions. Understanding HBV RNA transcription and the biological functions of HBV-related RNAs may open a new avenue for the development of novel HBV therapeutics that target HBV RNAs.