Review
Copyright ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. May 7, 2018; 24(17): 1839-1858
Published online May 7, 2018. doi: 10.3748/wjg.v24.i17.1839
Emergence of immunotherapy as a novel way to treat hepatocellular carcinoma
Naofumi Mukaida, Yasunari Nakamoto
Naofumi Mukaida, Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Ishikawa, Kanazawa 920-1192, Japan
Yasunari Nakamoto, Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
Author contributions: Mukaida N wrote the manuscript; Nakamoto Y supervised the description from a clinical standpoint.
Supported by (in part) Research Programs on the Innovative Development and Application for New Drugs for Hepatitis B (No. 17fk0310116h0001) from the Japan Agency for Medical Research and Development (AMED) and Extramural Collaborative Research Grant of Cancer Research Institute, Kanazawa University.
Conflict-of-interest statement: We have no conflict of interests.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Naofumi Mukaida, MD, PhD, Professor, Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Ishikawa, Kanazawa 920-1192, Japan. mukaida@staff.kanazawa-u.ac.jp
Telephone: +81-76-2646735 Fax: +81-76-2344520
Received: March 27, 2018
Peer-review started: March 28, 2018
First decision: April 11, 2018
Revised: April 15, 2018
Accepted: April 23, 2018
Article in press: April 23, 2018
Published online: May 7, 2018
Abstract

Tumor immunity proceeds through multiple processes, which consist of antigen presentation by antigen presenting cells (APCs) to educate effector cells and destruction by the effector cytotoxic cells. However, tumor immunity is frequently repressed at tumor sites. Malignantly transformed cells rarely survive the attack by the immune system, but cells that do survive change their phenotypes to reduce their immunogenicity. The resultant cells evade the attack by the immune system and form clinically discernible tumors. Tumor microenvironments simultaneously contain a wide variety of immune suppressive molecules and cells to dampen tumor immunity. Moreover, the liver microenvironment exhibits immune tolerance to reduce aberrant immune responses to massively-exposed antigens via the portal vein, and immune dysfunction is frequently associated with liver cirrhosis, which is widespread in hepatocellular carcinoma (HCC) patients. Immune therapy aims to reduce tumor burden, but it is also expected to prevent non-cancerous liver lesions from progressing to HCC, because HCC develops or recurs from non-cancerous liver lesions with chronic inflammatory states and/or cirrhosis and these lesions cannot be cured and/or eradicated by local and/or systemic therapies. Nevertheless, cancer immune therapy should augment specific tumor immunity by using two distinct measures: enhancing the effector cell functions such as antigen presentation capacity of APCs and tumor cell killing capacity of cytotoxic cells, and reactivating the immune system in immune-suppressive tumor microenvironments. Here, we will summarize the current status and discuss the future perspective on immune therapy for HCC.

Keywords: Natural killer T cell, Natural killer cell, Chimeric antigen receptor T cell, T cell receptor, Cytokine-induced killer cell, Program death-1, Cytotoxic lymphocyte antigen-4, Regulatory T cell, Dendritic cell, Myeloid-derived suppressor cell, PD-ligand 1, Peptide vaccine, Tumor-associated antigen, Tumor infiltrating lymphocyte

Core tip: Hepatocellular carcinoma (HCC) develops or recurs from non-cancerous liver lesions with chronic inflammatory states and/or cirrhosis, and these lesions cannot be cured and/or eradicated by local and/or drug therapies. Immune therapy may be effective for HCC treatment by preventing non-cancerous liver lesions from progressing to HCC as well as reducing tumor burdens. However, tumor immunity is frequently depressed in tumor sites, particularly in liver microenvironment, which is prone to exhibit immune tolerance, to reduce aberrant immune responses to massively-exposed antigens via portal veins. At present, cancer immune therapy employs two distinct strategies; enhancing the effector cell functions and unleashing the immune suppressive tumor microenvironments. Here, we will summarize the current status and discuss the future perspective on immune therapy for HCC.