Published online Jan 7, 2018. doi: 10.3748/wjg.v24.i1.112
Peer-review started: October 13, 2017
First decision: November 8, 2017
Revised: December 1, 2017
Accepted: December 12, 2017
Article in press: December 12, 2017
Published online: January 7, 2018
Processing time: 86 Days and 22.8 Hours
To quantify the components in biofilms and analyze the predisposing factors involved in occlusion of biliary stents.
In a prospective study conducted from April 2011 to March 2014 at a tertiary care hospital, all consecutive patients who required endoscopic biliary stent exchange/removal were included. Etiology of the biliary disease was diagnosed by imaging, cytology and on follow-up. Clinical details of patients with biliary stent retrieval were noted. All extracted stents were collected in sterile containers and immediately processed for quantification of biofilm proteins and polysaccharides. Molecular identification of commonly known and unknown bacteria was performed by polymerase chain reaction and density gradient gel electrophoresis methods.
Eighty one patients (41 males) with age range of 20-86 years were studied. The underlying causes for stent insertion were bile duct stones (n = 46; 56.8%) benign stricture (n = 29; 35.8%) and malignancy (n = 6; 7.4%) with cholangitis in 50 (61.7%) patients. The retrieved stent sizes were 7 Fr (n = 62; 76.5%) and 10 Fr (n = 19; 23.5%) with 65 days median insertion duration. Polybacterial consortia were detected in 90.1% of the stents. The most common bacteria identified by polymerase chain reaction alone and/or sequencing were Pseudomonas (n = 38), Citrobacter (n = 23), Klebsiella (n = 22), Staphylococcus (n = 20), Serratia (n = 16), Escherichia coli (n = 14), Streptococcus (n = 13), Enterococcus (n = 13), Aeromonas (n = 12), Proteus (n = 10) and Enterobacter (n = 9). Protein concentration according to gender (0.547 ± 0.242 mg/mL vs 0.458 ± 0.259 mg/mL; P = 0.115) as well as age > 60 years and < 60 years (0.468 ± 0.295 mg/mL vs 0.386 ± 0.238 mg/mL; P = 0.205) was non-significant. However, polysaccharide concentration was significant both according to gender (0.052 ± 0.021 mg/mL vs 0.049 ± 0.016 mg/mL; P < 0.0001) and age (0.051 ± 0.026 mg/mL vs 0.038 ± 0.016 mg/mL; P < 0.011). Protein concentration in the biofilm was significantly higher (0.555 ± 0.225 mg/mL vs 0.419 ± 0.276 mg/mL; P = 0.018) in patients with cholangitis, lower (0.356 ± 0.252 mg/mL vs 0.541 ± 0.238 mg/mL; P = 0.005) in the 10 Fr group than the 7 Fr group, and significantly higher (0.609 ± 0.240 mg/mL vs 0.476 ± 0.251 mg/mL; P = 0.060) in stents of ≥ 6 mo of indwelling time. However presence/absence of cholangitis, size of stent, indication of stent insertion and indwelling time did not affect the quantity of polysaccharide concentration.
Plastic stents retrieved from patients with biliary tract disease showed polymicrobial organisms with higher protein content among patients with cholangitis and those with smaller diameter stents. Longer indwelling duration had more biofilm formation.
Core tip: This prospective study evaluated the components in biofilms of retrieved biliary stents and analyzed predisposing factors involved in the process. A majority of stents showed growth of polymicrobial consortia. Polymerase chain reaction and sequencing helped to detect several microorganisms in most of the stents. Presence of cholangitis, smaller diameter of stents and longer indwelling time of stents were associated with higher chance of biofilm formation. To prevent stent occlusion, longer diameter stents with an indwelling time of 3 to 6 mo should be used.