Basic Study
Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Dec 7, 2017; 23(45): 7989-7999
Published online Dec 7, 2017. doi: 10.3748/wjg.v23.i45.7989
Improved experimental model of hepatic cystic hydatid disease resembling natural infection route with stable growing dynamics and immune reaction
Rui-Qing Zhang, Xin-Hua Chen, Hao Wen
Rui-Qing Zhang, Hao Wen, Hepatobiliary and Hydatid Department, Digestive and Vascular Surgery Centre, Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
Xin-Hua Chen, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
Xin-Hua Chen, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
Xin-Hua Chen, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
Author contributions: Chen XH designed the study; Wen H supervised and coordinated the study; Zhang RQ collected the samples and performed the follow-up; Chen XH drafted the manuscript; all authors reviewed and approved the final manuscript.
Supported by Xinjiang Key Lab of Xinjiang Science and Technology Bureau Xinjiang, No. 2014KL002; National Natural Science Foundation of China, No. 81372425; National S&T Major Project, No. SQ2018ZX100301.
Institutional review board statement: This study was approved by the Institutional Review Board of The First Affiliated Hospital of Xinjiang Medical University.
Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of The First Affiliated Hospital of Xinjiang Medical University (IACUC protocol number: 20141217003).
Conflict-of-interest statement: No potential conflicts of interest relevant to this article are reported.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Xin-Hua Chen, MD, PhD, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang Province, China. xinhua_chen@zju.edu.cn
Telephone: +86-571-87236570 Fax: +86-571-87236466
Received: July 21, 2017
Peer-review started: July 24, 2017
First decision: August 30, 2017
Revised: October 6, 2017
Accepted: October 17, 2017
Article in press: October 17, 2017
Published online: December 7, 2017
Processing time: 136 Days and 4.3 Hours
Abstract
AIM

To investigate a safer way to set up the disease model of cystic echinococcosis without contamination risk and develop a novel experimental murine model of hepatic cystic echinococcosis.

METHODS

C57B/6 mice were injected with human protoscolices of three different concentrations via the portal vein. The mice were followed for 10 mo by ultrasound, gross anatomy, and pathological and immunological examinations. The protoscolex migration in the portal vein, hydatid cyst growth, host immune reaction, and hepatic histopathology were examined periodically.

RESULTS

The infection rates in the mice in the high, medium, and low concentration groups were 90%, 100%, and 63.6%, respectively. The protoscolices migrated in the portal vein with blood flow, settled in the liver, and developed into orthotopic hepatic hydatid cysts, resembling the natural infection route and course.

CONCLUSION

We have established an improved experimental model of hepatic cystic echinococcosis with low biohazard risk but stable growing dynamics and immune reaction. It is especially useful for new anti-parasite medication trials against hydatid disease.

Keywords: Echinococcosis; Echinococcosis granulosus; Protoscolex; Hydatid disease; Experimental model

Core tip: In this experimental study, we developed a novel murine model of cystic echinococcosis. This orthotopic model resembles primary infection route and natural infectious course with low biohazard risk and high efficiency.