Published online Jan 21, 2017. doi: 10.3748/wjg.v23.i3.382
Peer-review started: August 31, 2016
First decision: October 10, 2016
Revised: November 9, 2016
Accepted: December 16, 2016
Article in press: December 19, 2016
Published online: January 21, 2017
Processing time: 137 Days and 8.2 Hours
Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.
Core tip: Pancreatic stellate cells (PSCs) have emerged as one of the major effector cells in chronic pancreatitis and pancreatic ductal adenocarcinoma. In this review, we discuss the physiological function of PSCs and the profibrogenic mechanisms. We also discuss various pathways, transcription factors and miRNAs implicated in the inflammatory and profibrogenic functions mediated by PSCs. We further discuss the crosstalk among PSCs, pancreatic cancer cells and pancreatic cancer stroma and mechanisms that lead to cancer progression, metastasis, tumour hypoxia, immune evasion and drug resistance. We conclude with recent preclinical and clinical studies that have targeted PSCs and cancer stroma.