Published online Aug 7, 2017. doi: 10.3748/wjg.v23.i29.5295
Peer-review started: January 5, 2017
First decision: January 19, 2017
Revised: May 10, 2017
Accepted: June 9, 2017
Article in press: June 12, 2017
Published online: August 7, 2017
Processing time: 218 Days and 8.5 Hours
To investigate the relation of two different mutations to the outcome of partial external biliary diversion (PEBD) in severe bile salt export pump (BSEP) deficiency.
Mutations in the gene encoding BSEP leading to severe BSEP deficiency in two unrelated patients were identified by genomic sequencing. Native liver biopsies and transiently transfected human embryonic kidney (HEK) 293 cells expressing either wild-type or mutated BSEP were subjected to immunofluorescence analysis to assess BSEP transporter localization. Bile acid profiles of patient and control bile samples were generated by ultra-performance liquid chromatography-tandem mass spectrometry. Wild-type and mutant BSEP transport of [3H]-labeled taurocholate (TC) and taurochenodeoxycholate (TCDC) was assessed by vesicular transport assays.
A girl (at 2 mo) presented with pruritus, jaundice and elevated serum bile salts (BS). PEBD stabilized liver function and prevented liver transplantation. She was heterozygous for the BSEP deletion p.T919del and the nonsense mutation p.R1235X. At the age of 17 years relative amounts of conjugated BS in her bile were normal, while total BS were less than 3% as compared to controls. An unrelated boy (age 1.5 years) presenting with severe pruritus and elevated serum BS was heterozygous for the same nonsense and another missense mutation, p.G1032R. PEBD failed to alleviate pruritus, eventually necessitating liver transplantation. BS concentration in bile was about 5% of controls. BS were mainly unconjugated with an unusual low amount of chenodeoxycholate derivatives (< 5%). The patients’ native liver biopsies showed canalicular BSEP expression. Both BSEP p.T919del and p.G1032R were localized in the plasma membrane in HEK293 cells. In vitro transport assays showed drastic reduction of transport by both mutations. Using purified recombinant BSEP as quantifiable reference, per-molecule transport rates for TC and TCDC were determined to be 3 and 2 BS molecules per wild-type BSEP transporter per minute, respectively.
In summary, our findings suggest that residual function of BSEP as well as substrate specificity influence the therapeutic effectiveness of PEBD in progressive familial intrahepatic cholestasis type 2 (PFIC-2).
Core tip: PFIC-2, a severe form of BSEP deficiency, is caused by mutations of the bile salt export pump (BSEP), an ATP binding cassette transporter exclusively expressed in hepatocytes. In this study we determine the functional impact of two distinct BSEP mutations on transporter localization and function in two unrelated PFIC-2 patients showing a drastically different response to partial external biliary diversion (PEBD). Our data demonstrate that residual bile salt transport by BSEP is likely required for a beneficial outcome of PEBD.