Published online Dec 7, 2016. doi: 10.3748/wjg.v22.i45.9871
Peer-review started: August 2, 2016
First decision: September 28, 2016
Revised: October 13, 2016
Accepted: November 14, 2016
Article in press: November 16, 2016
Published online: December 7, 2016
Processing time: 130 Days and 15.8 Hours
Over the last few years, the importance of the resident intestinal microbiota in the pathogenesis of several gastro-intestinal diseases has been largely investigated. Growing evidence suggest that microbiota can influence gastro-intestinal motility. The current working hypothesis is that dysbiosis-driven mucosal alterations induce the production of several inflammatory/immune mediators which affect gut neuro-muscular functions. Besides these indirect mucosal-mediated effects, the present review highlights that recent evidence suggests that microbiota can directly affect enteric nerves and smooth muscle cells functions through its metabolic products or bacterial molecular components translocated from the intestinal lumen. Toll-like receptors, the bacterial recognition receptors, are expressed both on enteric nerves and smooth muscle and are emerging as potential mediators between microbiota and the enteric neuromuscular apparatus. Furthermore, the ongoing studies on probiotics support the hypothesis that the neuromuscular apparatus may represent a target of intervention, thus opening new physiopathological and therapeutic scenarios.
Core tip: This article reviews the current evidence of gut microbiota and neuromuscular apparatus connection that results to be both direct and indirect. Besides dysbiosis-driven mucosal inflammatory mediators, recent evidence suggests that gut neuromuscular apparatus can be modulated directly by microbiota metabolic products or circulating bacterial molecular components translocated from the intestinal lumen.