Published online Oct 28, 2015. doi: 10.3748/wjg.v21.i40.11450
Peer-review started: May 20, 2015
First decision: June 23, 2015
Revised: July 10, 2015
Accepted: September 14, 2015
Article in press: September 15, 2015
Published online: October 28, 2015
Processing time: 158 Days and 0.4 Hours
Microbiota in human alimentary tract plays important roles for homeostatic maintenance of the body. Compositional difference of gut microbiota is tightly associated with susceptibility of many diseases, including inflammatory diseases, obesity, diabetes mellitus, cancer, and atherosclerosis. “Dysbiosis” refers to a state of imbalance among the colonies of microorganisms within the body, which brings abnormal increase of specific minor components and decrease in the normally dominant species. Since stomach secrets strong acid for its digestive role, this organ has long been thought a sterile organ. However, the discovery of Helicobacter pylori (H. pylori) has changed the concept. This bacterium has proven to cause gastritis, peptic ulcer, and gastric cancer. However, recent cross-sectional studies revealed that H. pylori carriers had a decreased risk of developing immunological diseases, such as asthma. H. pylori coinfection also suppresses inflammatory bowel diseases. This review describes human gastric microbiota by discussing its mutual interaction and pathogenic enrollment. Gastric “dysbiosis” may affect host inflammatory response and play important role for gastric pathogenesis. We will topically discuss enrollment of dysbiosis for genesis of gastric cancer as well as for disruption of immunological homeostasis affecting oncogenic resistance.
Core tip: The imbalance of microflora in the gut induces dysbiosis. Altered gut microflora is known to be associated with inflammatory diseases, obesity, diabetes, cancer, and atherosclerosis. Little is known about gastric microflora, which will also interacts with bacteria, viruses and funguses. In this review, we discuss that dysbiosis in the stomach may disrupt immunological homeostasis, reduce of carcinogenic resistance, and induce gastric cancer.