Published online Sep 21, 2015. doi: 10.3748/wjg.v21.i35.10192
Peer-review started: March 2, 2015
First decision: April 23, 2015
Revised: May 18, 2015
Accepted: July 15, 2015
Article in press: July 15, 2015
Published online: September 21, 2015
Processing time: 200 Days and 13 Hours
AIM: To assess the relationship between non-alcoholic fatty liver disease (NAFLD) with metabolic risk factors and brachial ankle pulse wave velocity (baPWV).
METHODS: A total of 8603 subjects (6662 males and 1941 females) were enrolled during an annual health check-up. Fatty liver was examined using a Philips HD 11 XE multi-function color Doppler diagnostic instrument, and baPWV was determined using a novel arteriosclerosis detection device. Blood pressure (BP), fasting plasma glucose (FPG), waist circumference (WC), plasma triglycerides (TG), high-density lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein (LDL) and uric acid (UA) were measured using standard methods. The relationship between fatty liver with metabolic risk factors and baPWV was analyzed using regression analysis and the χ2 test.
RESULTS: The values and abnormal rates of baPWV were significantly different between NAFLD patients and non-NAFLD subjects (P < 0.001). In addition, the values of baPWV were different by gender between NAFLD patients and non-NAFLD subjects. The OR values in females, males, and the entire population were 3.33, 1.67, and 2.13, respectively (P < 0.001). The incidence of high baPWV increased with increasing degree of NAFLD (levels 0, 1, 2, and 3) (P < 0.001), which was 45.9%, 54.5%, 60.2%, and 71.4% in males and 27.0%, 49.1%, 55.60%, and 60.0% in females (P < 0.001), respectively. Logistic regression analysis showed that the OR value for baPWV in the non-metabolic syndrome group and the metabolic syndrome group was 1.28 vs 1.14 (males) and 2.55 vs 0.98 (females). The OR values for baPWV in the non-high-BP and high-BP, non-high-WC and high-WC, non-high-FPG and high-FPG, non-high-TG and high-TG, non-high-HDL and high-HDL, non-high-TC and high-TC, non-high-LDL and high-LDL, non-high-UA and high-UA groups were 3.38 vs 1.19, 3.50 vs 1.44, 2.80 vs 2.30, 3.29 vs 1.88, 3.03 vs 3.28, 3.35 vs 2.70, 3.93 vs 1.66, and 3.20 vs 2.34, respectively, in females (P < 0.001), and were 1.37 vs 1.34, 1.56 vs 1.26, 1.51 vs 1.28, 1.49 vs 1.52, 1.71 vs 1.61, 1.59 vs 1.74, 1.76 vs 1.47, and 1.73 vs 1.54, respectively, in males (P < 0.01). The OR value for baPWV was still higher than 1.2 (1.21 in males and 1.40 in females) after adjustment for the metabolic component (0, 1, 2, 3, 4, 5, 6 and above) (P < 0.01).
CONCLUSION: NAFLD is closely correlated with baPWV, particularly in females. NAFLD has a large impact on baPWV, no matter whether the metabolic index is increased or not. NAFLD may be a useful indicator for assessing early arteriosclerosis.
Core tip: Non-alcoholic fatty liver disease (NAFLD) is emerging as an independent risk factor for the occurrence and progression of ischemic cardiovascular disease. However, the association between NAFLD and arterial stiffness is not fully elucidated. This study showed that NAFLD is closely related to brachial ankle pulse wave velocity. NAFLD has a noticeable impact when considering gender in the metabolic risk factor group, especially in females. NAFLD may be a useful indicator for assessing early arteriosclerosis.