Published online Sep 21, 2015. doi: 10.3748/wjg.v21.i35.10126
Peer-review started: January 16, 2015
First decision: March 10, 2015
Revised: March 25, 2015
Accepted: April 28, 2015
Article in press: April 28, 2015
Published online: September 21, 2015
Processing time: 245 Days and 22.6 Hours
AIM: To study the effects of QHF-cisplatin on H22 hepatocellular carcinoma (HCC) and their mechanisms of action.
METHODS: Sixty BALB/c mice were randomly divided into a model group (n = 48) and a normal control group (n = 12). An HCC xenograft tumor was created by injecting H22 cells directly into the liver parenchyma of the mice. The 48 BALB/c mice in the model group were randomly divided into four groups: QHF, DDP (cisplatin), QHF plus DDP, and model control. The inhibitory effects of these drugs on tumor growth were evaluated by calculating the rate of tumor growth inhibition. The mice were examined by observing their general condition, body weight and survival time. Changes in tumor tissue were observed under an optical microscope. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and α-fetoprotein (AFP) levels in serum were measured. Hepatocyte growth factor (HGF), c-mesenchymal-epithelial transition (c-Met) factor, phosphorylated (p)-c-Met, p38, p-p38, extracellular signal-regulated kinase (ERK), p-ERK and vascular endothelial growth factor (VEGF) levels were evaluated in tumor and liver tissues using western blotting.
RESULTS: Compared with the DDP group, a lower incidence of toxic reactions and a higher survival time were observed in the QHF plus DDP group. Tumor weight was significantly lower in the QHF, DDP and QHF plus DDP groups than in the model control group (0.24 ± 0.07, 0.18 ± 0.03 and 0.14 ± 0.01 g vs 0.38 ± 0.05 g, respectively), and the differences were statistically significant (P < 0.01). The rate of tumor growth inhibition in the QHF, DDP and QHF plus DDP groups was 38.7%, 52.6% and 63.5%, respectively. AST, ALT and AFP levels in serum were significantly lower in the QHF, DDP and QHF plus DDP groups compared to the model control group (P < 0.05). Similarly, HGF, p-c-Met, p-p38, p-ERK and VEGF levels in tumor tissue were significantly lower in the QHF, DDP and QHF plus DDP groups (P < 0.05).
CONCLUSION: QHF and DDP have an antiangiogenic effect on H22 HCC in mice. QHF inhibits tumor growth via blocking the HGF/c-Met signaling pathway, inhibiting p38, ERK and VEGF signaling.
Core tip: QHF and cisplatin (DDP) have an antiangiogenic effect on H22 hepatocellular carcinoma (HCC) in mice. QHF in combination with low-dose DDP has a synergistic antiangiogenic effect and can improve survival and reduce the incidence of toxic reactions in mice with H22 HCC. Moreover, QHF can significantly decrease the expression of hepatocyte growth factor and phosphorylated-c-mesenchymal-epithelial transition factor in liver tumor tissue.