Published online Jun 7, 2015. doi: 10.3748/wjg.v21.i21.6639
Peer-review started: November 3, 2014
First decision: December 26, 2014
Revised: February 3, 2015
Accepted: February 11, 2015
Article in press: February 11, 2015
Published online: June 7, 2015
Processing time: 220 Days and 12.9 Hours
AIM: To investigate precore/basal core promoter (PC/BCP) mutants throughout hepatitis B virus (HBV) infection and to determine their relationship to hepatitis B early antigen (HBeAg) titers.
METHODS: We enrolled 191 patients in various stages of HBV infection at the Huashan Hospital and the Taizhou Municipal Hospital from 2010 to 2012. None of the patients received antiviral therapy. HBV DNA from serum, was quantified by real-time PCR. The HBV genotype was determined by direct sequencing of the S gene. We used the Simpleprobe ultrasensitive quantitative method to detect PC/BCP mutants in each patient. We compared the strain number, percentage, and the changes in PC/BCP mutants in different phases, and analyzed the relationship between PC/BCP mutants and HBeAg by multiple linear regression and logistic regression.
RESULTS: Patients with HBV infection (n = 191) were assigned to groups by phase: Immune tolerance (IT) = 55, Immune clearance (IC) = 67, Low-replicative (LR) = 49, and HBeAg-negative hepatitis (ENH) = 20. Of the patients (male, 112; female, 79) enrolled, 122 were HBeAg-positive and 69 were HBeAg-negative. The median age was 33 years (range: 18-78 years). PC and BCP mutation detection rates were 84.82% (162/191) and 96.86% (185/191), respectively. In five HBeAg-negative cases, we detected double mutation G1896A/G1899A. The logarithm value of PC mutant quantities (log10 PC) significantly differed in IT, IC, and LR phases, as well as in the ENH phase (F = 49.350, P < 0.001). The logarithm value of BCP mutant quantities (log10 BCP) also differed during the four phases (F = 25.530, P < 0.001). Log10 PC and log10 BCP values were high in the IT and IC phases, decreased in the LR phase, and increased in the ENH phase, although the absolute value at this point remained lower than that in the IT and IC phases. PC mutant quantity per total viral load (PC%) and BCP mutant quantity per total viral load (BCP%) differed between phases (F = 20.040, P < 0.001; F = 10.830, P < 0.001), with PC% and BCP% gradually increasing in successive phases. HBeAg titers negatively correlated with PC% (Spearman’s rho = -0.354, P < 0.001) and BCP% (Spearman’s rho = -0.395, P < 0.001). The negative correlation between PC% and HBeAg status was significant (B = -5.281, P = 0.001), but there was no such correlation between BCP% and HBeAg status (B = -0.523, P = 0.552).
CONCLUSION: PC/BCP mutants become predominant in a dynamic and continuous process. Log10 PC, log10 BCP, PC% and BCP% might be combined to evaluate disease progression. PC% determines HBeAg status.
Core tip: During the natural history of hepatitis B virus infection, no evidence for the correlation between the dynamic alteration of precore/basal core promoter (PC/BCP) mutated strains and hepatitis B early antigen titers has been obtained by qualitative analysis. Using Simpleprobe ultrasensitive quantification of the wild-type and mutated hepatitis B virus (HBV) strains, we provided new insights into the process by which PC/BCP-mutated strains become dominant during the natural course of infection. Thus, we provide important clues for the evaluation of HBV infection status and the corresponding host immune responses.