Published online Nov 21, 2014. doi: 10.3748/wjg.v20.i43.15992
Revised: June 22, 2014
Accepted: August 13, 2014
Published online: November 21, 2014
Processing time: 197 Days and 16.5 Hours
Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era.
Core tip: Hepatitis C virus (HCV) infection remains as an important public health problem worldwide. Viral molecular evolution determines, in many ways, the outcome of HCV infection. Here, we present up-to-date information about the role of HCV molecular evolution in virus ransmission, disease progression and antiviral therapy.