Published online Jan 28, 2014. doi: 10.3748/wjg.v20.i4.997
Revised: November 1, 2013
Accepted: December 5, 2013
Published online: January 28, 2014
Processing time: 148 Days and 3.7 Hours
Single-port laparoscopic surgery (SPLS) is implemented through a tailored minimal single incision through which a number of laparoscopic instruments access. Introduction of operation-customized port system, utilization of a camera without a separate external light, and instruments with different lengths has brought the favorable environment for SPLS. However, performing SPLS still creates several hardships compared to multiport laparoscopic surgery; a single-port system inevitably leads to clashing of surgical instruments due to crowding. To overcome such difficulties, investigators has developed novel concepts and maneuvers, including the concept of inverse triangulation and the maneuvers of pivoting, spreading out dissection, hanging suture, and transluminal traction. The final destination of SPLS is expected to be a completely seamless operation, maximizing the minimal invasiveness. Specimen extraction through the umbilicus can undermine cosmesis by inducing a larger incision. Therefore, hybrid laparoscopic technique, which combined laparoscopic surgical technique with natural orifice specimen extraction - i.e., transvaginal or transanal route-, has been developed. SPLS and NOSE seemed to be the best combination in pursuit of minimal invasiveness. In the near future, robotic SPLS with natural orifice transluminal endoscopic surgery’s way of specimen extraction seems to be pursued. It is expected to provide a completely or nearly complete seamless operation regardless of location of the lesion in the abdomen.
Core tip: Single-port laparoscopic surgery (SPLS) has clear-cut benefits in terms of cosmesis and reduced wound morbidity. The technical difficulties have been overcome by novel concepts and maneuvers, including the concept of inverse triangulation and the maneuvers of pivoting, spreading out dissection, hanging suture, and transluminal traction. Cosmetic demerits, caused by the specimen extraction through the single-port site, can be selectively overcome by natural orifice specimen extraction (NOSE), such as using transvaginal or transanal route. In the near future, robotic SPLS with natural orifice transluminal endoscopic surgery’s way of specimen extraction seems to be pursued.