Published online Sep 7, 2013. doi: 10.3748/wjg.v19.i33.5500
Revised: July 7, 2013
Accepted: July 23, 2013
Published online: September 7, 2013
Processing time: 136 Days and 11.5 Hours
AIM: To evaluate the protective effects of fucoidan on oxidative stress-induced barrier disruption in human intestinal epithelial cells.
METHODS: In Caco-2 cell monolayer models, the disruption of barrier function by oxidative stress is mediated by H2O2. The integrity of polarized Caco-2 cell monolayers was determined by measuring the transepithelial resistance (TER) and permeability was estimated by measuring the paracellular transport of FITC-labeled 4-kDa dextran (FD4). The protective effects of fucoidan on epithelial barrier functions on polarized Caco-2 cell monolayers were evaluated by TER and FD4 flux. The expression of tight junction (TJ) proteins was assessed using reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence staining.
RESULTS: Without H2O2 treatment, fucoidan significantly increased the TER compared to control (P < 0.05), indicating a direct enhancement of intestinal epithelial barrier function. Next, H2O2 disrupted the epithelial barrier function in a time-dependent manner. Fucoidan prevented the H2O2-induced destruction in a dose-dependent manner. Fucoidan significantly decreased H2O2-induced FD4 flux (P < 0.01), indicating the prevention of disruption in paracellular permeability. RT-PCR showed that Caco-2 cells endogenously expressed claudin-1 and -2, and occludin and that H2O2 reduced the mRNA expression of these TJ proteins. Treatment with fucoidan attenuated the reduction in the expressions of claudin-1 and claudin-2 but not occludin. Immunofluorescence staining revealed that the expression of claudin-1 was intact and high on the cell surface. H2O2 disrupted the integrity of claudin-1. Treatment with fucoidan dramatically attenuated the expression of claudin-1.
CONCLUSION: Fucoidan enhanced intestinal epithelial barrier function by upregulating the expression of claudin-1. Thus, fucoidan may be an appropriate therapy for the treatment of inflammatory bowel diseases.
Core tip: The oxidative stress-induced disruption of the intestinal epithelial cells and subsequent increased paracellular permeability are critically important in the pathogenesis of inflammatory bowel diseases (IBD). A growing body of experimental evidence indicates that fucoidan, a dietary substance of fucose-enriched sulfated polysaccharides, display a wide variety of pharmacological anti-inflammatory activities. This study demonstrates that fucoidan protected the epithelial barrier function from oxidative injury of the tight junction as well as barrier disruption by upregulating the expression of claudin-1. Thus, fucoidan may be an appropriate therapy for the treatment of IBD.