Published online Jan 28, 2012. doi: 10.3748/wjg.v18.i4.309
Revised: July 14, 2011
Accepted: July 21, 2011
Published online: January 28, 2012
AIM: To investigate the efficacy and mechanism of action of allogeneic embryonic hepatocyte transplantation for the treatment of hepatic cirrhosis.
METHODS: Rat embryonic hepatocytes were characterized by examining cell markers. Wistar rats with CCl4-induced cirrhosis were randomly divided into two groups: a model group receiving continuous CCl4, and a cell transplantation group receiving continuous CCl4 and transplanted with embryonic fluorescent-labeled hepatocytes. In addition, a normal control group was composed of healthy rats. All rats were sacrificed after 2 wk following the initiation of the cell transplant. Ultrasound, pathological analyses and serum biochemical tests were used to evaluate the efficacy of embryonic hepatocyte transplantation. To analyze the recovery status of cirrhotic hepatocytes and the signaling pathways influenced by embryonic hepatocyte transplantation, real-time polymerase chain reaction was performed to examine the mRNA expression of stellate activation-associated protein (STAP), c-myb, α smooth muscle actin (α-SMA) and endothelin-1 (ET-1). Western blotting and immunohistochemistry were employed to detect α-SMA and ET-1 protein expression in hepatic tissues.
RESULTS: Gross morphological, ultrasound and histopathological examinations, serum biochemical tests and radioimmunoassays demonstrated that hepatic cirrhosis was successfully established in the Wistar rats. Stem cell factor receptor (c-kit), hepatocyte growth factor receptor (c-Met), Nestin, α fetal protein, albumin and cytokeratin19 markers were observed in the rat embryonic hepatocytes. Following embryonic hepatocyte transplantation, there was a significant reversal in the gross appearance, ultrasound findings, histopathological properties, and serum biochemical parameters of the rat liver. In addition, after the activation of hepatic stellate cells and STAP signaling, α-SMA, c-myb and ET-1 mRNA levels became significantly lower than in the untreated cirrhotic group (P < 0.05). These levels, however, were not statistically different from those of the normal healthy group. Immunohistochemical staining and Western blot analyses revealed that α-SMA and ET-1 protein expression levels in the transplantation group were significantly lower than in the untreated cirrhotic group, but being not statistically different from the normal group.
CONCLUSION: Transplantation of embryonic hepatocytes in rats has therapeutic effects on cirrhosis. The described treatment may significantly reduce the expression of STAP and ET-1.