Field Of Vision
Copyright ©2012 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Gastroenterol. Aug 7, 2012; 18(29): 3775-3781
Published online Aug 7, 2012. doi: 10.3748/wjg.v18.i29.3775
Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome
Silvia Sookoian, Carlos J Pirola
Silvia Sookoian, Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires 1427, Argentina
Carlos J Pirola, Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires 1427, Argentina
Author contributions: Sookoian S and Pirola CJ designed the study, analyzed and interpreted the data, and prepared and wrote the manuscript.
Supported by Grants PICT 2008-1521 and 2010-0441, from Agencia Nacional de Promoción Científica y Tecnológica; and UBACYT CM04, from Universidad de Buenos Aires
Correspondence to: Silvia Sookoian, MD, PhD, Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Instituto de Investigaciones Médicas A. Lanari. Av. Combatiente de Malvinas 3150, Ciudad Autónoma de Buenos Aires 1427, Argentina. sookoian.silvia@lanari.fmed.uba.ar
Telephone: +54-11-45148701 Fax: +54-11-45238947
Received: May 29, 2012
Revised: June 15, 2012
Accepted: June 28, 2012
Published online: August 7, 2012
Abstract

Although new research technologies are constantly used to look either for genes or biomarkers in the prediction of metabolic syndrome (MS), the pathogenesis and pathophysiology of this complex disease remains a major challenge. Interestingly, Cheng et al recently investigated possible pathways underlying MS by high-throughput metabolite profiling in two large and well characterized community-based cohorts. The authors explored by liquid chromatography and mass spectrometry the plasma concentrations of 45 distinct metabolites and examined their relation to cardiometabolic risk, and observed that metabolic risk factors such as obesity, insulin resistance (IR), high blood pressure, and dyslipidemia were associated with several metabolites, including branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites. In addition, the authors found a significant association of IR traits with glutamine, glutamate and the glutamine-to-glutamate ratio. These data provide new insight into the pathogenesis of MS-associated phenotypes and introduce a crucial role of glutamine-cycling pathway as prominently involved in the development of metabolic risk. We consider that the hypothesis about the role of abnormal glutamate metabolism in the pathogenesis of the MS is certainly challenging and suggests the critical role of the liver in the global metabolic modulation as glutamate metabolism is linked with aminotransferase reactions. We discuss here the critical role of the “liver metabolism” in the pathogenesis of the MS and IR, and postulate that before fatty liver develops, abnormal levels of liver enzymes, such as alanine and aspartate aminotransferases might reflect high levels of hepatic transamination of amino acids in the liver.

Keywords: Alanine; Aspartate; Glutamine; Glutamate; 2-oxoglutarate; Glycolysis; Pyruvate