Lewandowski RJ, Eifler AC, Bentrem DJ, Chung JC, Wang D, Woloschak GE, Yang GY, Ryu R, Salem R, Larson AC, Omary RA. Functional magnetic resonance imaging in an animal model of pancreatic cancer. World J Gastroenterol 2010; 16(26): 3292-3298 [PMID: 20614485 DOI: 10.3748/wjg.v16.i26.3292]
Corresponding Author of This Article
Robert J Lewandowski, MD, Assistant Professor, Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair St, Suite 800, Chicago, IL 60611, United States. r-lewandowski@northwestern.edu
Article-Type of This Article
Brief Article
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Jul 14, 2010; 16(26): 3292-3298 Published online Jul 14, 2010. doi: 10.3748/wjg.v16.i26.3292
Functional magnetic resonance imaging in an animal model of pancreatic cancer
Robert J Lewandowski, Aaron C Eifler, David J Bentrem, Johnathan C Chung, Dingxin Wang, Gayle E Woloschak, Guang-Yu Yang, Robert Ryu, Riad Salem, Andrew C Larson, Reed A Omary
Robert J Lewandowski, Aaron C Eifler, Johnathan C Chung, Dingxin Wang, Robert Ryu, Riad Salem, Andrew C Larson, Reed A Omary, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
David J Bentrem, Department of Surgical Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
Gayle E Woloschak, Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
Guang-Yu Yang, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
Author contributions: Larson AC, Omary RA and Lewandowski RJ designed the research; Bentrem DJ, Woloschak GE and Yang GY contributed the animal model; Chung JC, Wang D and Larson AC performed the imaging; Ryu R, Salem R and Omary RA performed catheterization of rabbits; Eifler AC analyzed the data; Lewandowski RJ and Eifler AC wrote the manuscript.
Supported by A Society of Interventional Radiology Foundation Pilot Research Grant (to Lewandowski RJ) and a Howard Hughes Medical Institute Medical Research Training Fellow (to Eifler AC)
Correspondence to: Robert J Lewandowski, MD, Assistant Professor, Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair St, Suite 800, Chicago, IL 60611, United States. r-lewandowski@northwestern.edu
Telephone: +1-312-6959121 Fax: +1-312-9265991
Received: November 25, 2009 Revised: December 24, 2009 Accepted: December 31, 2009 Published online: July 14, 2010
Abstract
AIM: To test the hypotheses that diffusion weighed (DW)- and transcatheter intraarterial perfusion (TRIP)-magnetic resonance imaging (MRI) can each be used to assess regional differences in tumor function in an animal pancreatic cancer model.
METHODS: VX2 tumors were implanted in pancreata of 6 rabbits. MRI and digital subtraction angiography (DSA) were performed 3 wk following implantation. With a 2-French catheter secured in the rabbit’s gastroduodenal artery, each rabbit was transferred to an adjacent 1.5T MRI scanner. DW- and TRIP-MRI were performed to determine if necrotic tumor core could be differentiated from viable tumor periphery. For each, we compared mean differences between tumor core/periphery using a 2-tailed paired t-test (α = 0.05). Imaging was correlated with histopathology.
RESULTS: Tumors were successfully grown in all rabbits, confirmed by necropsy. On DW-MRI, mean apparent diffusion coefficient (ADC) value was higher in necrotic tumor core (2.1 ± 0.3 mm2/s) than in viable tumor periphery (1.4 ± 0.5 mm2/s) (P < 0.05). On TRIP-MRI, mean perfusion values was higher in tumor periphery (110 ± 47 relative units) than in tumor core (66 ± 31 relative units) (P < 0.001).
CONCLUSION: Functional MRI can be used to differentiate necrotic from viable tumor cells in an animal pancreatic cancer model using ADC (DW-MRI) and perfusion (TRIP-MRI) values.