Published online Apr 28, 2009. doi: 10.3748/wjg.15.1943
Revised: March 16, 2009
Accepted: March 23, 2009
Published online: April 28, 2009
AIM: To investigate the in vivo effects and mechanisms of silibinin on the growth of hepatocellular carcinoma (HCC) xenografts in nude mice.
METHODS: Nude mice bearing HuH7 xenografts were used to assess the anti-HCC effects and mechanisms of silibinin.
RESULTS: Silibinin resulted in a potent dose-dependent reduction of HuH7 xenografts in association with a significant decrease in Ki-67 and α-fetoprotein production, nuclear NF-κB content, polo-like kinase 1, Rb phosphorylation, and E2F1/DP1 complex, but increased p27/CDK4 complex and checkpoint kinase 1 expression, suggesting that the in vivo effects of silibinin are mediated by inhibiting G1-S transition of the cell cycle. Silibinin-induced apoptosis of HuH7 xenografts was associated with inhibited survivin phosphorylation. Silibinin-reduced growth of HuH7 xenografts was associated with decreased p-ERK, increased PTEN expression and the activity of silibinin was correlated with decreased p-Akt production, indicating involvement of PTEN/PI3K/Akt and ERK pathways in its in vivo anti-HCC effects. Silibinin-reduced growth of HuH7 xenografts was also associated with a significant increase in AC-H3 and AC-H4 expression and the production of superoxide dismutase (SOD)-1.
CONCLUSION: Silibinin reduces HCC xenograft growth through the inhibition of cell proliferation, cell cycle progression and PTEN/P-Akt and ERK signaling, inducing cell apoptosis, and increasing histone acetylation and SOD-1 expression.