Published online Aug 28, 2008. doi: 10.3748/wjg.14.5090
Revised: August 12, 2008
Accepted: August 19, 2008
Published online: August 28, 2008
AIM: To investigate the effect of Lactobacillus bulgaricus (LBG) on the Toll-like receptor 4 (TLR4) pathway and interleukin-8 (IL-8) production in SGC-7901 cells treated with Helicobacter pyloriSydney strain 1 lipopolysaccharide (H pyloriSS1-LPS).
METHODS: SGC-7901 cells were treated with H pyloriSS1-LPS in the presence or absence of pretreatment for 1 h with viable LBG or supernatant recovered from LBG culture MRS broth (LBG-S). Cellular lysates were prepared for Western blot with anti-TLR4, anti-transforming growth factor β-activated kinase 1 (TAK1), anti-phospho-TAK1, anti-nuclear factor κB (NF-κB), anti-p38 mitogen-activated protein kinase (p38MAPK), and anti-phospho-p38MAPK antibodies. The amount of IL-8 in cell culture medium was measured by ELISA.
RESULTS: H pyloriSS1-LPS up-regulated the expression of TLR4, stimulated the phosphorylation of TAK1, subsequently enhanced the activation of NF-κB and the phosphorylation of p38MAPK in a time-dependent manner, leading to augmentation of IL-8 production in SGC-7901 cells. Viable LBG or LBG-S pretreatment attenuated the expression of TLR4, inhibited the phosphorylation of TAK1 and p38MAPK, prevented the activation of NF-κB, and consequently blocked IL-8 production.
CONCLUSION: H pyloriSS1-LPS induces IL-8 production through activating TLR4 signaling in SGC-7901 cells and viable LBG or LBG-S prevents H pyloriSS1-LPS-mediated IL-8 production via inhibition of the TLR4 pathway.