Published online Nov 28, 2007. doi: 10.3748/wjg.v13.i44.5944
Revised: August 31, 2007
Accepted: October 23, 2007
Published online: November 28, 2007
AIM: To investigate the in-vitro activation of cytotoxic T lymphocytes (CTLs) by fusion of mouse hepatocellular carcinoma (HCC) cells and lymphotactin gene-modified dendritic cells (DCs).
METHODS: Lymphotactin gene modified DCs (DCLptn) were prepared by lymphotactin recombinant adenovirus transduction of mature DCs which differentiated from mouse bone marrow cells by stimulation with granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-α). DCLptn and H22 fusion was prepared using 50% PEG. Lymphotactin gene and protein expression levels were measured by RT-PCR and ELISA, respectively. Lymphotactin chemotactic responses were examined by in-vitro chemotaxis assay. In-vitro activation of CTLs by DCLptn/H22 fusion was measured by detecting CD25 expression and cytokine production after autologous T cell stimulation. Cytotoxic function of activated T lymphocytes stimulated with DCLptn/H22 cells was determined by LDH cytotoxicity assay.
RESULTS: Lymphotactin gene could be efficiently transduced to DCs by adenovirus vector and showed an effective biological activity. After fusion, the hybrid DCLptn/H22 cells acquired the phenotypes of both DCLptn and H22 cells. In T cell proliferation assay, flow cytometry showed a very high CD25 expression, and cytokine release assay showed a significantly higher concentration of IFN-γ and IL-2 in DCLptn/H22 group than in DCLptn, DCLptn+H22, DC/H22 or H22 groups. Cytotoxicity assay revealed that T cells derived from DCLptn/H22 group had much higher anti-tumor activity than those derived from DCLptn, H22, DCLptn+H22, DC/H22 groups.
CONCLUSION: Lymphotactin gene-modified dendritoma induces T-cell proliferation and strong CTL reaction against allogenic HCC cells. Immunization-engineered fusion hybrid vaccine is an attractive strategy in prevention and treatment of HCC metastases.