Review
Copyright ©2006 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Gastroenterol. Feb 7, 2006; 12(5): 678-685
Published online Feb 7, 2006. doi: 10.3748/wjg.v12.i5.678
Liver cirrhosis and arterial hypertension
Jens H Henriksen, Soren Moller
Jens H Henriksen, Soren Moller, Department of Clinical Physiology, 239, University of Copenhagen, H:S Hvidovre Hospital, Copenhagen, Denmark
Correspondence to: Jens H Henriksen, MD, Professor of Clinical Physiology, Department of Clinical Physiology, 239 Hvidovre University Hospital, DK-2650 Hvidovre, Denmark. jens.h.henriksen@hh.hosp.dk
Telephone: +45-3632-2203 Fax:+45-3632-3750
Received: August 9, 2005
Revised: August 18, 2005
Accepted: August 22, 2005
Published online: February 7, 2006
Abstract

Characteristic findings in patients with cirrhosis are vasodilatation with low overall systemic vascular resistance, high arterial compliance, increased cardiac output, secondary activation of counter-regulatory systems (renin-angiotensin-aldosterone system, sympathetic nervous system, release of vasopressin), and resistance to vasopressors. The vasodilatory state is mediated through adrenomedullin, calcitonin gene-related peptide, nitric oxide, and other vasodilators, and is most pronounced in the splanchnic area. This constitutes an effective (although relative) counterbalance to increased arterial blood pressure. This review considers the alterations in systemic hemodynamics in patients with cirrhosis in relation to essential hypertension and arterial hypertension of the renal origin. Subjects with arterial hypertension (essential, secondary) may become normotensive during the development of cirrhosis, and arterial hypertension is rarely manifested in patients with cirrhosis, even in cases with renovascular disease and high circulating renin activity. There is much dispute as to the understanding of homoeostatic regulation in cirrhotic patients with manifest arterial hypertension. This most likely includes the combination of vasodilatation and vasoconstriction in parallel.

Keywords: Arterial compliance; Central vascular filling; Chyperdynamic circulation; Kidney function, Nitric oxide; Blood pressure regulation; Renin–angiotensin–aldosterone system; Sympathetic nervous system; Vasodilatation; Vasoconstriction