Published online May 21, 2006. doi: 10.3748/wjg.v12.i19.3000
Revised: July 21, 2005
Accepted: July 28, 2005
Published online: May 21, 2006
AIM: To investigate whether activin regulates the cell proliferation of human gastric cancer cell line SNU-16 through the mRNA changes in activin receptors, Smads and p21CIP1/WAF1.
METHODS: The human gastric cancer cell lines were cultured, RNAs were purified, and RT-PCRs were carried out with specifically designed primer for each gene. Among them, the two cell lines SNU-5 and SNU-16 were cultured with activin A for 24, 48 and 72 h. The cell proliferation was measured by MTT assay. For SNU-16, changes in ActRIA, ActRIB, ActRIIA, ActRIIB, Smad2, Smad4, Smad7, and p21CIP1/WAF1 mRNAs were detected with RT-PCR after the cells were cultured with activin A for 24, 48 and 72 h.
RESULTS: The proliferation of SNU-16 cells was down regulated by activin A whereas other cells showed no change. Basal level of inhibin/activin subunits, activin receptors, Smads, and p21CIP1/WAF1 except for activin βB mRNAs was observed to have differential expression patterns in the human gastric cancer cell lines, AGS, KATO III, SNU-1, SNU-5, SNU-16, SNU-484, SNU-601, SNU-638, SNU-668, and SNU-719. Interestingly, significantly higher expressions of ActR IIA and IIB mRNAs were observed in SNU-16 cells when compared to other cells. After activin treatment, ActR IA, IB, and IIA mRNA levels were decreased whereas ActR IIB mRNA level increased in SNU-16 cells. Smad4 mRNA increased for up to 48 h whereas Smad7 mRNA increased sharply at 24 h and returned to the initial level at 48 h in SNU-16 cells. In addition, expression of the p21CIP1/WAF1, the mitotic inhibitor, peaked at 72 h after activin treatment in SNU-16 cells.
CONCLUSION: Our results suggest that inhibition of cell growth by activin is regulated by the negative feedback effect of Smad7 on the activin signaling pathway, and is mediated through p21CIP1/WAF1 activation in SNU-16 cells.