Published online May 7, 2006. doi: 10.3748/wjg.v12.i17.2781
Revised: December 12, 2005
Accepted: January 24, 2006
Published online: May 7, 2006
AIM: To establish a visceral pain model via colorectal distension (CRD) and to evaluate the efficiency of behavioral responses of CRD by measuring the score of abdominal withdrawal reflex (AWR) in rats.
METHODS: Thirty-eight male SD rats weighing 180-240g were used to establish the visceral pain model. The rat was inserted intra-anally with a 7 cm long flexible latex balloon under ether anesthesia, and colorectal distensions by inflating the balloon with air were made 30 min after recovering from the anesthesia. Five AWR scores (AWR0 to AWR4) were used to assess the intensity of noxious visceral stimuli. It was regarded as the threshold of the minimal pressure (kPa) for abdominal flatting was induced by colorectal distension.
RESULTS: A vigorous AWR to distension of the descending colon and rectum was found in 100% of the awake rats tested. The higher the pressure of distension, the higher the score of AWR. The distension pressures of 0, 2.00, 3.33, 5.33 and 8.00 kPa produced different AWR scores (P < 0.05). The pain threshold of AWR was constant for up to 80 min after the initial windup (first 1-3 distensions), the mean threshold was 3.69 ± 0.35 kPa. Systemic administration of morphine sulfate elevated the threshold of visceral pain in a dose-dependent and naloxone reversible manner.
CONCLUSION: Scoring the AWR during colorectal distensions can assess the intensity of noxious visceral stimulus. Flatting of abdomen (AWR 3) to CRD as the visceral pain threshold is clear, constant and reliable. This pain model and its behavioral assessment are good for research on visceral pain and analgesics.