Viral Hepatitis
Copyright ©The Author(s) 2005. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jul 7, 2005; 11(25): 3893-3898
Published online Jul 7, 2005. doi: 10.3748/wjg.v11.i25.3893
Transactivating effect of complete S protein of hepatitis B virus and cloning of genes transactivated by complete S protein using suppression subtractive hybridization technique
Gui-Qin Bai, Yan Liu, Jun Cheng, Shu-Lin Zhang, Ya-Fei Yue, Yan-Ping Huang, Li-Ying Zhang
Gui-Qin Bai, Shu-Lin Zhang, Ya-Fei Yue, Yan-Ping Huang, The First Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
Yan Liu, Jun Cheng, Li-Ying Zhang, Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of PLA, 100 Xisihuanzhong Road, Beijing 100039, China
Author contributions: All authors contributed equally to the work.
Supported by the National Natural Science Foundation of China, No. C03011402, No. C30070690; the Science and Technique Foundation of PLA during the 9th Five-year Plan period, No. 98D063; the Launching Foundation for Students Studying Abroad of PLA, No. 98H038; the Youth Science and Technique Foundation of PLA during the 10th Five-year plan period, No. 01Q138; and the Science and Technique Foundation of PLA during the 10th Five-year Plan period, No. 01MB135
Correspondence to: Dr. Gui-Qin Bai, Department of Obstetrics and Gynecology of First Hospital , Xi’an Jiaotong University, Jiankang Road 1, Xi’an 710061, Shaanxi Province, China
Telephone: +86-29-85213194 Fax: +86-29-85252812
Received: November 8, 2004
Revised: December 23, 2004
Accepted: December 26, 2004
Published online: July 7, 2005
Abstract

AIM: To investigate the transactivating effect of complete S protein of hepatitis B virus (HBV) and to construct a subtractive cDNA library of genes transactivated by complete S protein of HBV by suppression subtractive hybridization (SSH) technique and to clone genes associated with its transactivation activity, and to pave the way for elucidating the pathogenesis of hepatitis B virus infection.

METHODS: pcDNA3.1(-)-complete S containing full-length HBV S gene was constructed by insertion of HBV complete S gene into BamH I/Kpn I sites. HepG2 cells were cotransfected with pcDNA3.1(-)-complete S and pSV-lacZ. After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). Suppression subtractive hybridization and bioinformatics techniques were used. The mRNA of HepG2 cells transfected with pcDNA3.1(-)-complete S and pcDNA3.1(-) empty vector was isolated, and detected for the expression of complete S protein by reverse transcription polymerase chain reaction (RT-PCR) method, and cDNA was synthesized. After digestion with restriction enzyme RsaI, cDNA fragments were obtained. Tester cDNA was then divided into two groups and ligated to the specific adaptors 1 and 2, respectively. After tester cDNA had been hybridized with driver cDNA twice and underwent nested PCR twice, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library. Amplification of the library was carried out within E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR) amplification.

RESULTS: The complete S mRNA could be detected by RT-PCR in HepG2 cells transfected with the pcDNA3.1(-)-complete S. The activity of β-gal in HepG2 cells transfected with the pcDNA3.1(-)-complete S was 6.9 times higher than that of control plasmid. The subtractive library of genes transactivated by HBV complete S protein was constructed successfully. The amplified library contains 86 positive clones. Colony PCR showed that 86 clones contained DNA inserts of 200-1 000 bp, respectively. Sequence analysis was performed in 35 clones randomly, and the full length sequences were obtained with bioinformatics method and searched for homologous DNA sequence from GenBank, altogether 33 coding sequences were obtained. These cDNA sequences might be target genes transactivated by complete S protein of HBV. Moreover, two unknown genes were discovered, full length coding sequences were obtained by bioinformatics techniques, one of them was named complete S transactivated protein 1 (CSTP1) and registered in GenBank (AY553877).

CONCLUSION: The complete S gene of HBV has a transactivating effect on SV40 early promoter. A subtractive cDNA library of genes transactivated by HBV complete S protein using SSH technique has been constructed successfully. The obtained sequences may be target genes transactivated by HBV complete S protein among which some genes coding proteins are involved in cell cycle regulation, metabolism, immunity, signal transduction, cell apoptosis and formation mechanism of hepatic carcinoma.

Keywords: Complete S protein; Transactivated genes; Hepatitis virus B