1
|
Liu W, Wang D, Wang L, Hu S, Jiang Y, Wang Y, Cai X, Chen J. Receptor dimers and biased ligands: Novel strategies for targeting G protein-coupled receptors. Pharmacol Ther 2025; 269:108829. [PMID: 40023322 DOI: 10.1016/j.pharmthera.2025.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of membrane receptors. They regulate physiological and pathological processes such as metabolic homeostasis, cell proliferation and differentiation, and the immune response, and are one of the most important classes of drug targets, being targeted by 30-40 % of marketed drugs. A growing number of studies continue to reveal the complexity of GPCRs, especially their ability to interact with each other to form higher-order structures such as homodimers and heterodimers, which have different functions than monomers, and are involved in disease development and progression. The existence of GPCR homodimers and heterodimers is opening up new directions in drug discovery and development to harness their therapeutic potential. Particularly striking is the ability of GPCR dimers to trigger unique biased signalling pathways, which exquisitely balance the relationship between therapeutic effects and side effects. By suppressing adverse reactions and enhancing beneficial drug effects, GPCR dimers provide an unprecedented opportunity to minimise side effects, maximise therapeutic efficacy and enhance safety. This review aims to highlight the latest research advances in GPCR dimerization and GPCR-biased signalling, focusing on the development of dimer-targeting and biased ligands as innovative drugs that will likely provide new strategies for treating GPCR-related diseases as well as a better understanding of drug design for compounds that target GPCRs. GPCRs will play an increasingly important role in precision medicine and personalised therapy, leading us towards a safer, more efficient and smarter pharmaceutical future.
Collapse
Affiliation(s)
- Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Luoqi Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China.
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
2
|
Chen LN, Zhou H, Xi K, Cheng S, Liu Y, Fu Y, Ma X, Xu P, Ji SY, Wang WW, Shen DD, Zhang H, Shen Q, Chai R, Zhang M, Yang L, Han F, Mao C, Cai X, Zhang Y. Proton perception and activation of a proton-sensing GPCR. Mol Cell 2025; 85:1640-1657.e8. [PMID: 40215960 DOI: 10.1016/j.molcel.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025]
Abstract
Maintaining pH at cellular, tissular, and systemic levels is essential for human health. Proton-sensing GPCRs regulate physiological and pathological processes by sensing the extracellular acidity. However, the molecular mechanism of proton sensing and activation of these receptors remains elusive. Here, we present cryoelectron microscopy (cryo-EM) structures of human GPR4, a prototypical proton-sensing GPCR, in its inactive and active states. Our studies reveal that three extracellular histidine residues are crucial for proton sensing of human GPR4. The binding of protons induces substantial conformational changes in GPR4's ECLs, particularly in ECL2, which transforms from a helix-loop to a β-turn-β configuration. This transformation leads to the rearrangements of H-bond network and hydrophobic packing, relayed by non-canonical motifs to accommodate G proteins. Furthermore, the antagonist NE52-QQ57 hinders human GPR4 activation by preventing hydrophobic stacking rearrangement. Our findings provide a molecular framework for understanding the activation mechanism of a human proton-sensing GPCR, aiding future drug discovery.
Collapse
Affiliation(s)
- Li-Nan Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kun Xi
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shizhuo Cheng
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongfeng Liu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yifan Fu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiangyu Ma
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ping Xu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Su-Yu Ji
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei-Wei Wang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingya Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Min Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Lin Yang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chunyou Mao
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China.
| | - Yan Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
3
|
Sugiura Y, Ikuta T, Sumii Y, Tsujimoto H, Suzuki K, Suno R, Ariff PNAM, Iwata S, Shibata N, Inoue A, Kobayashi T, Kandori H, Katayama K. Discovering Key Activation Hotspots in the M 2 Muscarinic Receptor. J Am Chem Soc 2025; 147:11754-11765. [PMID: 40086452 PMCID: PMC11987023 DOI: 10.1021/jacs.4c14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G protein-coupled receptor (GPCR) that serves as a model system for understanding ligand recognition and GPCR activation. Here, using vibrational spectroscopy, we identify the mechanisms governing M2R activation by its native agonist, acetylcholine. Combined with mutagenesis, computational chemistry, and organic synthetic chemistry, our analyses found that the precise distance between acetylcholine and Asn404, one of the amino acids constituting the ligand-binding site, is important for M2R activation and that the N404Q mutant undergoes partial active state-like conformational changes. We discovered that a water molecule bridging acetylcholine and Asn404 forms a precise and flexible hydrogen bond network, triggering the outward movement of transmembrane helix 6 in M2R. Consistent with this observation, disruptions in this hydrogen bond network via chemical modification at the α- or β-position of acetylcholine failed to activate M2R. Collectively, our findings pinpoint Asn404 as a critical residue that both senses acetylcholine binding and induces M2R activation.
Collapse
Affiliation(s)
- Yuya Sugiura
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Ikuta
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuji Sumii
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hirokazu Tsujimoto
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kohei Suzuki
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ryoji Suno
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department
of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | | | - So Iwata
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Norio Shibata
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Asuka Inoue
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department
of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Howard CJ, Abell NS, Osuna BA, Jones EM, Chan LY, Chan H, Artis DR, Asfaha JB, Bloom JS, Cooper AR, Liao A, Mahdavi E, Mohammed N, Su AL, Uribe GA, Kosuri S, Dickel DE, Lubock NB. High-resolution deep mutational scanning of the melanocortin-4 receptor enables target characterization for drug discovery. eLife 2025; 13:RP104725. [PMID: 40202051 PMCID: PMC11981609 DOI: 10.7554/elife.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R's function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R's activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joshua S Bloom
- Department of Human Genetics and Department of Computational Medicine, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kim J, Ko S, Choi C, Bae J, Byeon H, Seok C, Choi HJ. Structural insights into small-molecule agonist recognition and activation of complement receptor C3aR. EMBO J 2025:10.1038/s44318-025-00429-w. [PMID: 40195498 DOI: 10.1038/s44318-025-00429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
The complement system plays crucial roles in innate immunity and inflammatory responses. The anaphylatoxin C3a mediates pro-inflammatory and chemotactic functions through the G protein-coupled receptor C3aR. While the active structure of the C3a-C3aR-Gi complex has been determined, the inactive conformation and activation mechanism of C3aR remain elusive. Here we report the cryo-EM structure of ligand-free, G protein-free C3aR, providing insights into its inactive conformation. In addition, we determine the structures of C3aR in complex with the synthetic small-molecule agonist JR14a in two distinct conformational states: a G protein-free intermediate, and a fully active Gi-bound state. The structure of the active JR14a-bound C3aR reveals that JR14a engages in highly conserved interactions with C3aR, similar to the binding of the C-terminal pentapeptide of C3a, along with JR14a-specific interactions. Structural comparison of C3aR in the apo, intermediate, and fully active states provides novel insights into the conformational landscape and activation mechanism of C3aR and defines a molecular basis explaining its high basal activity. Our results may aid in the rational design of therapeutics targeting complement-related inflammatory disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Saebom Ko
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeonsung Byeon
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Ieremias L, Manandhar A, Schultz-Knudsen K, Kaspersen MH, Vrettou CI, Rexen Ulven E, Ulven T. Minimal Structural Variation of GPR84 Full Agonist Causes Functional Switch to Inverse Agonism. J Med Chem 2025. [PMID: 40183744 DOI: 10.1021/acs.jmedchem.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
GPR84 is an orphan GPCR that is expressed primarily in immune cells such as neutrophils and macrophages, and that modulates immune responses during inflammation. The receptor has appeared as a promising drug target, and accumulating evidence indicates that GPR84 inhibition is a viable approach for treatment of various inflammatory and fibrotic disorders. Herein, we report the discovery of a minor structural modification resulting in functional switch of agonists to inverse agonists. Subsequent SAR explorations led to the identification of low-nanomolar potency inverse agonists and antagonists, as exemplified by TUG-2181 (40g). Representative compounds exhibited good physicochemical properties, selectivity over other free fatty acid receptors, and the ability to fully inhibit GPR84-mediated neutrophil activation.
Collapse
Affiliation(s)
- Loukas Ieremias
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Katrine Schultz-Knudsen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mads Holmgaard Kaspersen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Christina Ioanna Vrettou
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
7
|
Han W, Chen Z, Wang MW, Zhou Q. gmx_RRCS: A Precision Tool for Detecting Subtle Conformational Dynamics in Molecular Simulations. J Mol Biol 2025:169129. [PMID: 40188940 DOI: 10.1016/j.jmb.2025.169129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Understanding conformational changes in biomolecules is crucial for insights into their biological functions and drug design, often studied by molecular dynamics (MD) simulations. However, current measurements such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), interface area, and minimum distances fail to capture subtle conformational changes, including hydrophobic packing. Our study introduces gmx_RRCS, a precision tool developed to detect subtle conformational dynamics in MD simulations by analyzing residue-residue contact score (RRCS). This tool quantifies interaction strengths between residues, enabling systematic analysis of both major and subtle conformational changes. Its application in investigating the molecular recognition of peptide 20 by glucagon-like peptide-1 receptor (GLP-1R) quantified the interactions of specific peptide moieties with the receptor, identified crucial positions for receptor binding, and highlighted key receptor residues involved in peptide recognition throughout the MD simulation. In phosphoinositide 3-kinase alpha (PI3Kα), gmx_RRCS revealed distinct conformational states of oncogenic hotspot residues by quantifying subtle sidechain reorientations and salt bridge dynamics. Similarly, in nucleic acid systems, the tool distinguished differential binding mechanisms between ochratoxin A and norfloxacin by revealing unique interaction patterns at critical nucleobases correlating with binding affinities. The tool has been validated through the analysis of over 150 simulation trajectories, covering 40,000 ns of total simulation time and 20 systems. gmx_RRCS significantly advances structural/molecular biology studies by enhancing our understanding of protein conformational dynamics, thereby facilitating rational drug design. gmx_RRCS is freely available on GitHub (https://github.com/RuijinHospitalRCMSB/gmx_RRCS) and PyPI (https://pypi.org/project/gmx-RRCS).
Collapse
Affiliation(s)
- Wei Han
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenghan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming-Wei Wang
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China.
| | - Qingtong Zhou
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025; 24:251-275. [PMID: 39747671 PMCID: PMC11968245 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
9
|
Cui ZJ. To activate a G protein-coupled receptor permanently with cell surface photodynamic action in the gastrointestinal tract. World J Gastroenterol 2025; 31:102423. [PMID: 40182590 PMCID: PMC11962841 DOI: 10.3748/wjg.v31.i12.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 03/26/2025] Open
Abstract
Different from reversible agonist-stimulated receptor activation, singlet oxygen oxidation activates permanently G protein-coupled receptor (GPCR) cholecystokinin 1 (CCK1R) in type II photodynamic action, with soluble photosensitizer dyes (sulphonated aluminum phthalocyanine, λmax 675 nm) or genetically encoded protein photosensitizers (KillerRed λmax 585 nm; mini singlet oxygen generator λmax 450 nm), together with a pulse of light (37 mW/cm2, 1-2 minutes). Three lines of evidence shed light on the mechanism of GPCR activated by singlet oxygen (GPCR-ABSO): (1) CCK1R is quantitatively converted from dimer to monomer; (2) Transmembrane domain 3, a pharmacophore for permanent photodynamic CCK1R activation, can be transplanted to non-susceptible M3 acetylcholine receptor; and (3) Larger size of disordered region in intracellular loop 3 correlates with higher sensitivity to photodynamic CCK1R activation. GPCR-ABSO will add to the arsenal of engineered designer GPCR such as receptors activated solely by synthetic ligands and designer receptors exclusively activated by designer drugs, but show some clear advantages: Enhanced selectivity (double selectivity of localized photosensitizer and light illumination), long-lasting activation with no need for repeated drug administration, antagonist-binding site remains intact when needed, ease to apply to multiple GPCR. This type of permanent photodynamic activation may be applied to functional proteins other than GPCR.
Collapse
Affiliation(s)
- Zong-Jie Cui
- Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- The Ministry of Education Laboratory for Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Kugawa M, Kawakami K, Kise R, Suomivuori CM, Tsujimura M, Kobayashi K, Kojima A, Inoue WJ, Fukuda M, Matsui TE, Fukunaga A, Koyanagi J, Kim S, Ikeda H, Yamashita K, Saito K, Ishikita H, Dror RO, Inoue A, Kato HE. Structural insights into lipid chain-length selectivity and allosteric regulation of FFA2. Nat Commun 2025; 16:2809. [PMID: 40140663 PMCID: PMC11947310 DOI: 10.1038/s41467-025-57983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
The free fatty acid receptor 2 (FFA2) is a G protein-coupled receptor (GPCR) that selectively recognizes short-chain fatty acids to regulate metabolic and immune functions. As a promising therapeutic target, FFA2 has been the focus of intensive development of synthetic ligands. However, the mechanisms by which endogenous and synthetic ligands modulate FFA2 activity remain unclear. Here, we present the structures of the human FFA2-Gi complex activated by the synthetic orthosteric agonist TUG-1375 and the positive allosteric modulator/allosteric agonist 4-CMTB, along with the structure of the inactive FFA2 bound to the antagonist GLPG0974. Structural comparisons with FFA1 and mutational studies reveal how FFA2 selects specific fatty acid chain lengths. Moreover, our structures reveal that GLPG0974 functions as an allosteric antagonist by binding adjacent to the orthosteric pocket to block agonist binding, whereas 4-CMTB binds the outer surface of transmembrane helices 6 and 7 to directly activate the receptor. Supported by computational and functional studies, these insights illuminate diverse mechanisms of ligand action, paving the way for precise GPCR-targeted drug design.
Collapse
Affiliation(s)
- Mai Kugawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kouki Kawakami
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Masaki Tsujimura
- Department of Advanced Interdisciplinary Studies, The University of Tokyo, Meguro, Tokyo, Japan
| | - Kazuhiro Kobayashi
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
| | - Asato Kojima
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Life Sciences, School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Wakana J Inoue
- Department of Life Sciences, School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Masahiro Fukuda
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
| | - Toshiki E Matsui
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Life Sciences, School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Ayami Fukunaga
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Junki Koyanagi
- Department of Life Sciences, School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Suhyang Kim
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hisako Ikeda
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keitaro Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
- FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Hideaki E Kato
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
- Department of Life Sciences, School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan.
- FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
11
|
Gazit Shimoni N, Tose AJ, Seng C, Jin Y, Lukacsovich T, Yang H, Verharen JPH, Liu C, Tanios M, Hu E, Read J, Tang LW, Lim BK, Tian L, Földy C, Lammel S. Changes in neurotensin signalling drive hedonic devaluation in obesity. Nature 2025:10.1038/s41586-025-08748-y. [PMID: 40140571 DOI: 10.1038/s41586-025-08748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
Calorie-rich foods, particularly those that are high in fat and sugar, evoke pleasure in both humans and animals1. However, prolonged consumption of such foods may reduce their hedonic value, potentially contributing to obesity2-4. Here we investigated this phenomenon in mice on a chronic high-fat diet (HFD). Although these mice preferred high-fat food over regular chow in their home cages, they showed reduced interest in calorie-rich foods in a no-effort setting. This paradoxical decrease in hedonic feeding has been reported previously3-7, but its neurobiological basis remains unclear. We found that in mice on regular diet, neurons in the lateral nucleus accumbens (NAcLat) projecting to the ventral tegmental area (VTA) encoded hedonic feeding behaviours. In HFD mice, this behaviour was reduced and uncoupled from neural activity. Optogenetic stimulation of the NAcLat→VTA pathway increased hedonic feeding in mice on regular diet but not in HFD mice, though this behaviour was restored when HFD mice returned to a regular diet. HFD mice exhibited reduced neurotensin expression and release in the NAcLat→VTA pathway. Furthermore, neurotensin knockout in the NAcLat and neurotensin receptor blockade in the VTA each abolished optogenetically induced hedonic feeding behaviour. Enhancing neurotensin signalling via overexpression normalized aspects of diet-induced obesity, including weight gain and hedonic feeding. Together, our findings identify a neural circuit mechanism that links the devaluation of hedonic foods with obesity.
Collapse
Affiliation(s)
- Neta Gazit Shimoni
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Amanda J Tose
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Charlotte Seng
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Max Planck Florida Institute For Neuroscience, Jupiter, FL, USA
| | - Tamás Lukacsovich
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Hongbin Yang
- Department of Neurobiology and Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jeroen P H Verharen
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Christine Liu
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Michael Tanios
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Eric Hu
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Read
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Lilly W Tang
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Byung Kook Lim
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Max Planck Florida Institute For Neuroscience, Jupiter, FL, USA
| | - Csaba Földy
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Stephan Lammel
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Li X, Liu Y, Liu J, Ma W, Ti R, Warshel A, Ye RD, Zhu L. CXC Chemokine Ligand 12 Facilitates Gi Protein Binding to CXC Chemokine Receptor 4 by Stabilizing Packing of the Proline-Isoleucine-Phenylalanine Motif: Insights from Automated Path Searching. J Am Chem Soc 2025; 147:10129-10138. [PMID: 40096846 PMCID: PMC11951141 DOI: 10.1021/jacs.4c14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
The activation of G protein-coupled receptors (GPCRs) is a complex multibody multievent process involving agonist binding, receptor activation, G protein coupling, and subsequent G protein activation. The order and energetics of these events, though crucial for the rational design of selective GPCR drugs, are challenging to characterize and remain largely underexplored. Here, we employed molecular dynamics simulations and our recently developed traveling salesman-based automated path searching (TAPS) algorithm to efficiently locate the minimum free-energy paths for the coupling events of the CXC chemokine receptor 4 (CXCR4) with its endogenous ligand CXC chemokine ligand 12 (CXCL12) and Gi protein. We show that, after overcoming three low energy barriers (3.24-6.89 kcal/mol), Gi alone can precouple with CXCR4 even without CXCL12, consistent with previous reports on the existence of the apo CXCR4-Gi complex and our NanoBiT experiments. The highest barrier of 6.89 kcal/mol in this process corresponds to the packing of the proline-isoleucine-phenylalanine (PIF) motif of CXCR4. Interestingly, without Gi, CXCL12 alone cannot activate CXCR4 (high barrier of 18.89 kcal/mol). Instead, it can enhance Gi coupling by circumventing the energy barrier of PIF packing. Shedding new light on the activation mechanism of CXCR4, these results present TAPS as a promising tool for uncovering complete activation pathways of GPCRs and the corresponding agonist design.
Collapse
Affiliation(s)
- Xinyu Li
- School of
Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yezhou Liu
- Kobilka
Institute
of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jinchu Liu
- School of
Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Wenzhuo Ma
- School of
Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Rujuan Ti
- School of
Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Arieh Warshel
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard D. Ye
- Kobilka
Institute
of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- The
Chinese
University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D
Center, Shenzhen, Guangdong 518048, China
| | - Lizhe Zhu
- School of
Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
13
|
Sang X, Jiao H, Meng Q, Fang X, Pan Q, Zhou J, Qian T, Zhang W, Xu Y, An J, Huang Z, Hu H. Structural mechanisms underlying the modulation of CXCR4 by diverse small-molecule antagonists. Proc Natl Acad Sci U S A 2025; 122:e2425795122. [PMID: 40063796 PMCID: PMC11929458 DOI: 10.1073/pnas.2425795122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025] Open
Abstract
CXCR4 (CXC chemokine receptor type 4), a member of the G protein-coupled receptor superfamily, plays a role in cell migration and functions as a coreceptor for HIV entry. Molecular therapeutics targeting CXCR4 have been under intensive investigation. To date, only two small-molecule antagonist drugs targeting CXCR4, plerixafor (AMD3100) and mavorixafor (AMD070), have been approved. Here, we present the high-resolution structures of CXCR4 complexed with AMD3100 and AMD070, as well as a small-molecule antagonist HF51116 that has very different chemical structure and binding mechanism from AMD3100 and AMD070. The interactions between these antagonists and the receptor are analyzed in details, and the mechanisms of antagonism are elucidated. Both the major and minor subpockets on CXCR4 are found to be involved in binding of these small-molecule antagonists. The distinct conformations of Trp942.60 observed in these structures highlight the plasticity of the binding pocket on CXCR4, offering valuable insights into the exploration and refinement of therapeutic strategies targeting this chemokine receptor.
Collapse
Affiliation(s)
- Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Qian Meng
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Tingli Qian
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Wanqin Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Yan Xu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
- School of Life Sciences, Tsinghua University, Beijing100084, China
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| |
Collapse
|
14
|
Wei W, Valerio M, Ma N, Kang H, Nguyen LXT, Marcucci G, Vaidehi N. Disordered C-Terminus Plays a Critical Role in the Activity of the Small GTPase Ran. Biochemistry 2025; 64:1393-1404. [PMID: 39999282 DOI: 10.1021/acs.biochem.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ran is a small GTPase of the Ras superfamily that governs nucleocytoplasmic transport, including that of miR-126, a microRNA that supports the homeostasis and expansion of leukemia stem cells (LSCs). Ran binds to Exportin 5 to facilitate the transport of precursor (pre)-miR-126 across the nuclear membrane for its maturation. Our goal is to inhibit Ran to prevent transport of pre-miR-126 to the cytoplasm. Like other Ras family proteins, targeting Ran with small molecules is challenging due to its relatively flat surface and lack of binding cavities. Ran's activity is regulated by a long and disordered C-terminus that provides opportunities for identifying cryptic binding pockets to target. We used a combination of molecular dynamics simulations and experiments and uncovered the critical role of the ensemble of the C-terminal conformations that enable the transition of Ran from the GTP-bound "on state" to its GDP-bound "off-state". We also showed that the Ran C-terminus allosterically modulates the conformations of residues in the nucleotide binding site and in the functionally relevant Switch 1 and 2 regions. Through computational deep mutational scans and experiments, we identified four residue hotspots L182, Y197, D200, and L201 at the core-C-terminus interface and four residue mutations V27A, E70D, N122A, and N122Y that mediate the allosteric communication between the core and switch regions. This information paves the way for our next step in the design of novel allosteric modulators for Ran.
Collapse
Affiliation(s)
- Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| | - Melissa Valerio
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
| | - Hyunjun Kang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Le Xuan Truong Nguyen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California 91010, United States
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
15
|
Manookian B, Mukhaleva E, Gogoshin G, Bhattacharya S, Sivaramakrishnan S, Vaidehi N, Rodin AS, Branciamore S. Temporally Resolved and Interpretable Machine Learning Model of GPCR conformational transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643765. [PMID: 40166135 PMCID: PMC11957019 DOI: 10.1101/2025.03.17.643765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Identifying target-specific drugs remains a challenge in pharmacology, especially for highly homologous proteins such as dopamine receptors D 2 R and D 3 R. Differences in target-specific cryptic druggable sites for such receptors arise from the distinct conformational ensembles underlying their dynamic behavior. While Molecular Dynamics (MD) simulations has emerged as a powerful tool for dissecting protein dynamics, the sheer volume of MD data requires scalable and unbiased data analysis strategies to pinpoint residue communities regulating conformational state ensembles. We have developed the Dynamically Resolved Universal Model for BayEsiAn network Tracking (DRUMBEAT) interpretable machine learning algorithm and validated it by identifying residue communities that enable the deactivation of the β 2 -adrenergic receptor. Further, upon analyzing dopamine receptor dynamics we identified distinct and non-conserved residue communities around the contacts F170 4.62 _F172 ECL2 and S146 4.38 _G141 34.56 that are specific to D 3 R conformational transitions compared to D 2 R. This information can be tapped to design subtype-specific drugs for neuropsychiatric and substance use disorders.
Collapse
Affiliation(s)
- Babgen Manookian
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell and Developmental Biology, University of Minnesota; Minneapolis, MN, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Andrei S. Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| |
Collapse
|
16
|
Szukiewicz D. Potential Therapeutic Exploitation of G Protein-Coupled Receptor 120 (GPR120/FFAR4) Signaling in Obesity-Related Metabolic Disorders. Int J Mol Sci 2025; 26:2501. [PMID: 40141148 PMCID: PMC11941992 DOI: 10.3390/ijms26062501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The increasing prevalence of overweight and obesity not only in adults but also among children and adolescents has become one of the most alarming health problems worldwide. Metabolic disorders accompanying fat accumulation during pathological weight gain induce chronic low-grade inflammation, which, in a vicious cycle, increases the immune response through pro-inflammatory changes in the cytokine (adipokine) profile. Obesity decreases life expectancy, largely because obese individuals are at an increased risk of many medical complications, often referred to as metabolic syndrome, which refers to the co-occurrence of insulin resistance (IR), impaired glucose tolerance, type 2 diabetes (T2D), atherogenic dyslipidemia, hypertension, and premature ischemic heart disease. Metabotropic G protein-coupled receptors (GPCRs) constitute the most numerous and diverse group of cell surface transmembrane receptors in eukaryotes. Among the GPCRs, researchers are focusing on the connection of G protein-coupled receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), with signaling pathways regulating the inflammatory response and insulin sensitivity. This review presents the current state of knowledge concerning the involvement of GPR120 in anti-inflammatory and metabolic signaling. Since both inflammation in adipose tissue and insulin resistance are key problems in obesity, there is a rationale for the development of novel, GPR120-based therapies for overweight and obese individuals. The main problems associated with introducing this type of treatment into clinical practice are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
17
|
Yang WS, Liu Q, Li Y, Li GY, Lin S, Li J, Li LY, Li Y, Ge XL, Wang XZ, Wu W, Yan J, Wang GF, Zhou QT, Liu Q, Wang MW, Li ZP. Oral FPR2/ALX modulators tune myeloid cell activity to ameliorate mucosal inflammation in inflammatory bowel disease. Acta Pharmacol Sin 2025:10.1038/s41401-025-01525-7. [PMID: 40069490 DOI: 10.1038/s41401-025-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Current treatments of inflammatory bowel disease (IBD) largely depend on anti-inflammatory and immunosuppressive strategies with unacceptable efficacy and adverse events. Resolution or repair agents to treat IBD are not available but potential targets like formyl peptide receptor 2 (FPR2/ALX) may fill the gap. In this study we evaluated the therapeutic effects of two small molecule FPR2/ALX modulators (agonist Quin-C1 and antagonist Quin-C7) against IBD. We first analyzed the cryo-electron microscopy structure of the Quin-C1-FPR2 in complex with heterotrimeric Gi to reveal the structural basis for ligand recognition and FPR2 activation. We then established dextran sulfate sodium (DSS)-induced colitis model in both normal and myeloid depletion mice. We showed that oral administration of Quin-C1 for 7 days ameliorated DSS-induced colitis evidenced by alleviated disease activity indexes, reduced colonic histopathological scores, and corrected cytokine disorders. Meanwhile, we found that oral administration of FPR2/ALX antagonist Quin-C7 exerted therapeutic actions similar to those of Quin-C1. In terms of symptomatic improvements, the ED50 values of Quin-C1 and Quin-C7 were 1.3660 mg/kg and 2.2110 mg/kg, respectively. The underlying mechanisms involved ERK- or ERK/JNK-mediated myeloid cell regulation that limited the development of colitis and inflammation. This is the first demonstration of anti-colitis property caused by synthetic small molecule FPR2/ALX modulators, implying that FPR2/ALX modulation rather than agonism alone ameliorates IBD.
Collapse
Affiliation(s)
- Wen-Sheng Yang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guan-Yi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin-Yu Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuan Li
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Xi-Lin Ge
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiao-Zhen Wang
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Wei Wu
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Guang-Fei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, 572025, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhi-Ping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Department of Clinical Pharmacy, Kunshan Maternity and Children's Health Care Hospital, Children's Hospital of Fudan University Kunshan Branch, Kunshan, 215300, China.
| |
Collapse
|
18
|
Gong Z, Zhang X, Liu M, Jin C, Hu Y. Visualizing agonist-induced M2 receptor activation regulated by aromatic ring dynamics. Proc Natl Acad Sci U S A 2025; 122:e2418559122. [PMID: 40053366 PMCID: PMC11912407 DOI: 10.1073/pnas.2418559122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Despite the growing number of G protein-coupled receptor (GPCR) structures being resolved, the dynamic process of how GPCRs transit from the inactive toward the active state remains unclear. In this study, comprehensive molecular dynamics simulations were performed to explore how ligand binding modulates the conformational dynamics of the M2 muscarinic acetylcholine receptor (M2R). We observed a sequential occurrence of structural changes in the inactive-to-active transition of M2R induced by a superagonist iperoxo, which includes the orthosteric binding site contraction, the TM6 opening into an intermediate conformation, and a further structural change toward full activation upon binding to G protein or a G protein mimetic nanobody. Two activation intermediates were identified, which show structural features different from those reported for apo-GPCRs. Moreover, our results suggest that stabilization of a specific W4006.48 conformation and enhanced F3966.44 dynamics are crucial for activation, whereas distinct side-chain rotamer equilibriums of Y2065.58 in the cytoplasmic cavity are correlated with agonist efficacies. Our work provides atomic-level structural insights into the agonist-induced M2R activation pathway and highlights a mechanism by which ligand efficacy can be encoded and transduced in the form of aromatic ring dynamics.
Collapse
Affiliation(s)
- Zhou Gong
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Changwen Jin
- Beijing NMR Center, College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
19
|
Fares S, Krishna BA. Why Are Cytomegalovirus-Encoded G-Protein-Coupled Receptors Essential for Infection but Only Variably Conserved? Pathogens 2025; 14:245. [PMID: 40137730 PMCID: PMC11945030 DOI: 10.3390/pathogens14030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Cytomegaloviruses (CMVs) encode viral G-protein-coupled receptors (vGPCRs) that have diverged from their cellular homologues to perform new functions. Human cytomegalovirus (HCMV) encodes four vGPCRs: UL33, UL78, US27, and US28, which contribute to viral pathogenesis, cellular signalling, and latency. While the role of US28 in chemokine signalling and viral latency is well characterised, the functions of other vGPCRs remain incompletely understood. Rodent cytomegaloviruses only have homologues to UL33 and UL78, while primates have two to five additional GPCRs which are homologues of US27 and US28. Different CMVs appear to have evolved vGPCRs with functions specific to infection of their respective host. As non-human CMVs are used as model organisms to understand clinical cytomegalovirus disease and develop vaccines and antivirals, understanding the differences between these vGPCRs helps researchers understand critical differences between their models. This review aims to address the differences between CMV vGPCRs, and how these differences may affect models of CMV disease to facilitate future research.
Collapse
Affiliation(s)
- Suzan Fares
- Occlutech Holding AG, Feldstrasse 22, 8200 Schaffhausen, Switzerland;
| | - Benjamin A. Krishna
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
20
|
Panda SP, Sinha S, Kesharwani A, Kumar S, Singh M, Kondepudi GM, Samuel A, Sanghi AK, Thapliyal S, Chaubey KK, Guru A. Role of OX/OXR cascade in insomnia and sleep deprivation link Alzheimer's disease and Parkinson's disease: Therapeutic avenue of Dual OXR Antagonist (DORA). Biochem Pharmacol 2025; 233:116794. [PMID: 39920976 DOI: 10.1016/j.bcp.2025.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Sleep plays a role in the elimination of neurotoxic metabolites that are accumulated in the waking brain as a result of neuronal activity. Long-term insomnia and sleep deprivation are associated with oxidative stress, neuroinflammation, amyloid beta (Aβ) deposition, and Lewy body formation, which are known to increase the risk of mild cognitive impairment (MCI) and dementia. Orexin A (OXA) and orexin B (OXB), two neuropeptides produced in the lateral hypothalamus, are known to influence the sleep-wake cycle and the stress responses through their interactions with OX receptor 1 (OX1R) and OX receptor 2 (OX2R), respectively. OX/OXR cascade demonstrates intricate neuroprotective and anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-kB) and PLC/Ca2+ pathway activation. OX1R binds OXA more strongly than OXB by one-order ratio, whereas OX2R binds both OXA and OXB with equal strengths. Overexpression of OXs in individuals experiences sleep deprivation, circadian rhythm disturbances, insomnia-associated MCI, Parkinson's disease (PD), and Alzheimer's disease (AD). Many dual OXR antagonists (DORAs) have been effective in their clinical studies, with suvorexant and daridorexant receiving FDA clearance for insomnia therapy in 2014 and 2022 respectively. The results of clinical studies suggested that there is a new pharmaceutical option for treating insomnia and the sleep deprivation-AD/PD relationship by targeting the OXR system. DORAs treatment reduces Aβ deposition in the brain and improves synaptic plasticity and circadian expression. This review indicates the link between sleep disorders and MCI, DORAs are an appropriate medication category for treating insomnia, and sleep deprivation links AD and PD.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Gana Manjusha Kondepudi
- Vignan Institute of Pharmaceutical Technology, BesidesVSEZ, Kapu Jaggaraju Peta, Duvvada Station Road, Visakhapatnam 530049, India.
| | - Abhishek Samuel
- Translam Institute of Pharmaceutical Education & Research, Mawana Road, Meerut, Uttar Pradesh, India.
| | | | - Shailendra Thapliyal
- Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Science, Sanskriti University, Mathura, UP, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
21
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025; 62:113-134. [PMID: 39743506 PMCID: PMC11854058 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M. Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
22
|
Plazinski W, Archala A, Jozwiak K, Plazinska A. Unraveling the Structural Basis of Biased Agonism in the β 2-Adrenergic Receptor Through Molecular Dynamics Simulations. Proteins 2025; 93:728-744. [PMID: 39548888 DOI: 10.1002/prot.26766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Biased agonism in G protein-coupled receptors is a phenomenon resulting in the selective activation of distinct intracellular signaling pathways by different agonists, which may exhibit bias toward either Gs, Gi, or arrestin-mediated pathways. This study investigates the structural basis of ligand-induced biased agonism within the context of the β2-adrenergic receptor (β2-AR). Atomistic molecular dynamics simulations were conducted for β2-AR complexes with two stereoisomers of methoxynaphtyl fenoterol (MNFen), that is, compounds eliciting qualitatively different cellular responses. The simulations reveal distinct interaction patterns within the binding cavity, dependent on the stereoisomer. These changes propagate to the intracellular parts of the receptor, triggering various structural responses: the dynamic structure of the intracellular regions of the (R,R)-MNFen complex more closely resembles the "Gs-compatible" and "β-arrestin-compatible" conformation of β2-AR, while both stereoisomers maintain structural responses equidistant from the inactive conformation. These findings are confirmed by independent coarse-grained simulations. In the context of deciphered molecular mechanisms, Trp313 plays a pivotal role, altering its orientation upon interactions with (R,R)-MNFen, along with the Lys305-Asp192 ionic bridge. This effect, accompanied by ligand interactions with residues on TM2, increases the strength of interactions within the extracellular region and the binding cavity, resulting in a slightly more open conformation and a minor (by ca. 0.2 nm) increase in the distance between the TM5-TM7, TM1-TM6, TM6-TM7, and TM1-TM5 pairs. On the other hand, an even slighter decrease in the distance between the TM1-TM4 and TM2-TM4 pairs is observed.
Collapse
Affiliation(s)
- Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Poland
| | - Aneta Archala
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Anita Plazinska
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
23
|
Guan L, Qi B, Tan J, Chen Y, Sun Y, Zhang Q, Zou Y. Structural Insight into the Inactive/Active States of 5-HT1AR and Molecular Mechanisms of Electric Fields in Modulating 5-HT1AR. J Chem Inf Model 2025; 65:2066-2079. [PMID: 39924812 DOI: 10.1021/acs.jcim.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Probing the differences between inactive/active states of the serotonin 1A receptor (5-HT1AR) and the dynamic receptor conformations is vital for understanding signaling transduction pathways and diverse physiological responses. Here, we compared the conformational features between the inactive and active states of 5-HT1AR and explored the role of serotonin in the activation process of 5-HT1AR by using molecular dynamics (MD) simulations. The results show that the position of TM6 and the arrangements of key motifs exhibit distinctions in the inactive and active states of 5-HT1AR. The binding of serotonin to 5-HT1AR is mostly driven by hydrophobic, aromatic stacking, anion-π, and H-bonding interactions. We also performed additional MD simulations with electric fields (EFs) of 0.01 and 0.03 V/nm to investigate the effects of EFs on the conformation of the 5-HT1AR-serotonin complex. The conformational change of 5-HT1AR and the inward movement of TM6 are increased with the field strength, indicative of a dependence on the strength of the EF. The EF of 0.03 V/nm affects the binding behaviors of serotonin with 5-HT1AR and further disturbs the activation of 5-HT1AR by serotonin. This study first reveals atomic-level information about the distinct features between inactive and active states of 5-HT1AR and demonstrates the pivotal role of EF in modulating the 5-HT1AR-ligand complex.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Yukang Chen
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, P. R. China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
24
|
Zheng H, Yu J, Gao L, Wang K, Xu Z, Zeng Z, Zheng K, Tang X, Tian X, Zhao Q, Zhao J, Wan H, Cao Z, Zhang K, Cheng J, Brosius J, Zhang H, Li W, Yan W, Shao Z, Luo F, Deng C. S1PR1-biased activation drives the resolution of endothelial dysfunction-associated inflammatory diseases by maintaining endothelial integrity. Nat Commun 2025; 16:1826. [PMID: 39979282 PMCID: PMC11842847 DOI: 10.1038/s41467-025-57124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
G protein-coupled sphingosine-1-phosphate receptor 1 (S1PR1), a drug target for inflammatory bowel disease (IBD), enables immune cells to egress from lymph nodes, but the treatment increases the risk of immunosuppression. The functional signaling pathway triggered by S1PR1 activation in endothelial cells and its therapeutic application remains unclear. Here, we showed that S1PR1 is highly expressed in endothelial cells of IBD patients and positively correlated with endothelial markers. Gi-biased agonist-SAR247799 activated S1PR1 and reversed pathology in male mouse and organoid IBD models by protecting the integrity of the endothelial barrier without affecting immune cell egress. Cryo-electron microscopy structure of S1PR1-Gi signaling complex bound to SAR247799 with a resolution of 3.47 Å revealed the recognition mode for the biased ligand. With the efficacy of SAR247799 in treating other endothelial dysfunction-associated inflammatory diseases, our study offers mechanistic insights into the Gi-biased S1PR1 agonist and represents a strategy for endothelial dysfunction-associated disease treatment.
Collapse
Affiliation(s)
- Huaping Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Yu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Luhua Gao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kexin Wang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Xu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Tang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongwei Cao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology and University Hospital, Macau, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jürgen Brosius
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Zhenhua Shao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Mukhaleva E, Manookian B, Chen H, Sivaraj IR, Ma N, Wei W, Urbaniak K, Gogoshin G, Bhattacharya S, Vaidehi N, Rodin AS, Branciamore S. BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories. J Chem Inf Model 2025; 65:1278-1288. [PMID: 39846243 DOI: 10.1021/acs.jcim.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially. However, the analysis of MD simulation trajectories has not been data-driven but rather dependent on the user's prior knowledge of the systems, thus limiting the scope and utility of the MD simulations. Recently, we pioneered using BNM for analyzing the MD trajectories of protein complexes. The resulting BN models yield novel fully data-driven insights into the functional importance of the amino acid residues that modulate proteins' function. In this report, we describe the BaNDyT software package that implements the BNM specifically attuned to the MD simulation trajectories data. We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software's uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. This provides a powerful and versatile mechanism for users to control the workflow. As an application example, we have utilized this methodology and associated software to study how membrane proteins, specifically the G protein-coupled receptors, selectively couple to G proteins. The software can be used for analyzing MD trajectories of any protein as well as polymeric materials.
Collapse
Affiliation(s)
- Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, California 91010, United States
| | - Babgen Manookian
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
| | - Hanyu Chen
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, California 91010, United States
| | - Indira R Sivaraj
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, California 91010, United States
| | - Konstancja Urbaniak
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, California 91010, United States
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, California 91010, United States
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, California 91010, United States
| |
Collapse
|
26
|
Yang T, Mukhaleva E, Wei W, Weiss D, Ma N, Shanmugasundaram V, Vaidehi N. Insights from protein frustration analysis of BRD4-cereblon degrader ternary complexes show separation of strong from weak degraders. RSC Med Chem 2025:d4md00962b. [PMID: 40012705 PMCID: PMC11851170 DOI: 10.1039/d4md00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs), also known as ligand-directed degraders (LDDs), are an innovative class of small molecules that leverage the ubiquitin-proteasome system to induce the degradation of target proteins. Structure based design methods are not readily applicable for designing LDDs due to the dynamic nature of the ternary complexes. This study investigates the dynamic properties of five LDD-mediated BRD4-cereblon complexes, focusing on the challenges of evaluating linker efficiency due to the difficulty in identifying suitable computational metrics that correlate well with the cooperativity or degradation propensity of LDDs. We uncovered that protein frustration, a concept originally developed to understand protein folding, calculated for the residues in the protein-protein interface of the LDD-mediated ternary complexes recapitulate the strength of degradation of the LDDs. Our findings indicated that hydrophobic residues in the interface are among the highly frustrated residues pairs, and they are crucial in distinguishing strong degraders from weak ones. By analyzing frustration patterns, we identified key residues and interactions critical to the effectiveness of the ternary complex. These insights provide practical guidelines for designing and prioritizing more efficient degraders, paving the way for the development of next-generation LDDs with improved therapeutic potential.
Collapse
Affiliation(s)
- Tianyi Yang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope 1500, E. Duarte Road Duarte CA 91010 USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope 1500, E. Duarte Road Duarte CA 91010 USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope USA
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope 1500, E. Duarte Road Duarte CA 91010 USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope USA
| | - Dahlia Weiss
- Bristol-Myers-Squibb Company 250 Water St, East Cambridge MA 02141 USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope 1500, E. Duarte Road Duarte CA 91010 USA
| | | | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope 1500, E. Duarte Road Duarte CA 91010 USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope USA
| |
Collapse
|
27
|
Howard MK, Hoppe N, Huang XP, Mitrovic D, Billesbølle CB, Macdonald CB, Mehrotra E, Rockefeller Grimes P, Trinidad DD, Delemotte L, English JG, Coyote-Maestas W, Manglik A. Molecular basis of proton sensing by G protein-coupled receptors. Cell 2025; 188:671-687.e20. [PMID: 39753132 PMCID: PMC11849372 DOI: 10.1016/j.cell.2024.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 11/21/2024] [Indexed: 02/09/2025]
Abstract
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues. Using deep mutational scanning (DMS), we determined the functional importance of every residue in GPR68 activation by generating ∼9,500 mutants and measuring their effects on signaling and surface expression. Constant-pH molecular dynamics simulations provided insights into the conformational landscape and protonation patterns of key residues. This unbiased approach revealed that, unlike other proton-sensitive channels and receptors, no single site is critical for proton recognition. Instead, a network of titratable residues extends from the extracellular surface to the transmembrane region, converging on canonical motifs to activate proton-sensing GPCRs. Our approach integrating structure, simulations, and unbiased functional interrogation provides a framework for understanding GPCR signaling complexity.
Collapse
Affiliation(s)
- Matthew K Howard
- Tetrad graduate program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics graduate program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xi-Ping Huang
- Department of Pharmacology and the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Darko Mitrovic
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 12121 Solna, Stockholm, Stockholm County 114 28, Sweden
| | - Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christian B Macdonald
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eshan Mehrotra
- Tetrad graduate program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Rockefeller Grimes
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donovan D Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 12121 Solna, Stockholm, Stockholm County 114 28, Sweden
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
28
|
Marx DC, Gonzalez-Hernandez AJ, Huynh K, Strauss A, Rico C, Siepe D, Gallo P, Lee J, Sharghi S, Arefin A, Broichhagen J, Eliezer D, Kalocsay M, Khelashvili G, Levitz J. Structural Diversity of Metabotropic Glutamate Receptor/Beta-Arrestin Coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636340. [PMID: 39975168 PMCID: PMC11838584 DOI: 10.1101/2025.02.03.636340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite the widespread physiological roles of beta-arrestin (β-arr) coupling in G protein-coupled receptor (GPCR) regulation, the molecular basis of GPCR/β-arr interaction has been studied primarily in monomeric family A GPCRs. Here we take an integrative biophysical and structural approach to uncover extreme molecular diversity in β-arr coupling to the neuromodulatory metabotropic glutamate receptors (mGluRs), prototypical, dimeric family C GPCRs. Using a new single molecule pulldown assay, we find that mGluRs couple to β-arrs with a 2:1 or 2:2 stoichiometry via a combination of "tail" and "core" interactions. Single molecule FRET and electron microscopy show that β-arr1 stabilizes active conformations of mGluR8 and a combination of cryo-EM structures and molecular dynamics simulations define the positioning of mGluR8-bound β-arr1, together suggesting a steric mechanism of mGluR desensitization involving interactions with both subunits and the lipid bilayer. Finally, combinatorial mutagenesis enables the identification of a landscape of homo- and hetero-dimeric mGluR/β-arr complexes, including mGluR/β-arr1/β-arr2 megacomplexes, providing a framework for family C GPCR/β-arr coupling and expanding the known range of GPCR/transducer coupling modes.
Collapse
|
29
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2025; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
30
|
Zhang MY, Ao JY, Liu N, Chen T, Lu SY. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin 2025; 46:500-511. [PMID: 39256608 PMCID: PMC11747167 DOI: 10.1038/s41401-024-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Institute of Hepatobiliary and Pancreatic Surgery, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China.
| | - Shao-Yong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
31
|
Sarker DK, Ray P, Salam FBA, Uddin SJ. Exploring the impact of deleterious missense nonsynonymous single nucleotide polymorphisms in the DRD4 gene using computational approaches. Sci Rep 2025; 15:3150. [PMID: 39856236 PMCID: PMC11761060 DOI: 10.1038/s41598-025-86916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Dopamine receptor D4 (DRD4) plays a vital role in regulating various physiological functions, including attention, impulse control, and sleep, as well as being associated with various neurological diseases, including attention deficit hyperactivity disorder, novelty seeking, and so on. However, a comprehensive analysis of harmful nonsynonymous single nucleotide polymorphisms (nsSNPs) of the DRD4 gene and their effects remains unexplored. The aim of this study is to uncover novel damaging missense nsSNPs and their structural and functional effects on the DRD4 receptor. From the dbSNP database, we found 677 nsSNPs, and then we analyzed their functional consequences, disease associations, and effects on protein stability with fifteen in silico tools. Five variants, including L65ICL1P (rs1459150721), V1163.33D (rs761875546), I1293.46S (rs751467198), I1564.46T (rs757732258), and F2015.47S (rs199609858), were identified as the most deleterious mutations that were also present in the conserved region and showed lower interactions with neighboring residues. To comprehensively understand their impact, we docked agonist dopamine and antagonist nemonapride at the binding site of the receptor, followed by 200 ns molecular dynamics simulations. We identified the V116D and I129S mutations as the most damaging, followed by F201S in the dopamine-bound states. Both the V116D and I129S variants demonstrated significantly high RMSD, Rg, and SASA, and low thermodynamic stability. The F201S-dopamine complex exhibited lower compactness and higher motions, along with a significant loss of hydrogen bonds and active site interactions. By contrast, while interacting with nemonapride, the impact of the I156T and L65P mutations was highly deleterious; both showed lower stability, higher flexibility, and higher motions. Additionally, nemonapride significantly lost interactions with the active site, notably in the I156T variant. We also found the V116D-nemonapride complex as structurally damaging; however, the interaction patterns of nemonapride were less altered in the MMPBSA analysis. Overall, this study revealed five novel deleterious variants along with a comprehensive understanding of their effect in the presence of an agonist and antagonist, which could be helpful for understanding disease susceptibility, precision medicine, and developing potential drugs.
Collapse
Affiliation(s)
- Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science & Technology, Dhaka, 1230, Bangladesh
| | - Pallobi Ray
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Fayad Bin Abdus Salam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
32
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Chan MC, Alfawaz Y, Paul A, Shukla D. Molecular insights into the elevator-type mechanism of the cyanobacterial bicarbonate transporter BicA. Biophys J 2025; 124:379-392. [PMID: 39674889 PMCID: PMC11788499 DOI: 10.1016/j.bpj.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/17/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
Cyanobacteria are responsible for up to 80% of aquatic carbon dioxide fixation and have evolved a specialized carbon concentrating mechanism to increase photosynthetic yield. As such, cyanobacteria are attractive targets for synthetic biology and engineering approaches to address the demands of global energy security, food production, and climate change for an increasing world's population. The bicarbonate transporter BicA is a sodium-dependent, low-affinity, high-flux bicarbonate symporter expressed in the plasma membrane of cyanobacteria. Despite extensive biochemical characterization of BicA, including the resolution of the BicA crystal structure, the dynamic understanding of the bicarbonate transport mechanism remains elusive. To this end, we have collected over 1 ms of all-atom molecular dynamics simulation data of the BicA dimer to elucidate the structural rearrangements involved in the substrate transport process. We further characterized the energetics of the transition of BicA protomers and investigated potential mutations that are shown to decrease the free energy barrier of conformational transitions. In all, our study illuminates a detailed mechanistic understanding of the conformational dynamics of bicarbonate transporters and provides atomistic insights to engineering these transporters for enhanced photosynthetic production.
Collapse
Affiliation(s)
- Matthew C Chan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Yazeed Alfawaz
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Arnav Paul
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
34
|
Pușcașu C, Andrei C, Olaru OT, Zanfirescu A. Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Curr Issues Mol Biol 2025; 47:63. [PMID: 39852178 PMCID: PMC11763455 DOI: 10.3390/cimb47010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes. Receptors such as free fatty acid receptor 1 (FFAR1/GPR40), free fatty acid receptor 4 (FFAR4/GPR120), free fatty acid receptor 2 (FFAR2/GPR43), and Takeda G protein-coupled receptor 5 (TGR5/GPR131/GPBAR1) are key modulators of nociceptive signaling. GPR40, activated by long-chain fatty acids, exhibits strong anti-inflammatory effects by reducing cytokine expression. Butyrate-activated GPR43 inhibits inflammatory mediators like nitric oxide synthase-2 and cyclooxygenase-2, mitigating inflammation. TGR5, activated by bile acids, regulates inflammation and cellular senescence through pathways like NF-κB and p38. These receptors are promising therapeutic targets in chronic pain, addressing the metabolic and inflammatory factors underlying nociceptive sensitization and tissue degeneration. This review explores the molecular mechanisms of metabolite-sensing receptors in chronic pain, their therapeutic potential, and challenges in clinical application. By uncovering these mechanisms, metabolite-sensing receptors could lead to safer, more effective pain management strategies.
Collapse
Affiliation(s)
| | - Corina Andrei
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (O.T.O.); (A.Z.)
| | | | | |
Collapse
|
35
|
Zhang B, Xue L, Wu ZB. Structure and Function of Somatostatin and Its Receptors in Endocrinology. Endocr Rev 2025; 46:26-42. [PMID: 39116368 DOI: 10.1210/endrev/bnae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Somatostatin analogs, such as octreotide, lanreotide, and pasireotide, which function as somatostatin receptor ligands (SRLs), are the main drugs used for the treatment of acromegaly. These ligands are also used as important molecules for radiation therapy and imaging of neuroendocrine tumors. Somatostatin receptors (SSTRs) are canonical G protein-coupled proteins that play a role in metabolism, growth, and pathological conditions such as hormone disorders, neurological diseases, and cancers. Cryogenic electron microscopy combined with the protein structure prediction platform AlphaFold has been used to determine the 3-dimensional structures of many proteins. Recently, several groups published a series of papers illustrating the 3-dimensional structure of SSTR2, including that of the inactive/activated SSTR2-G protein complex bound to different ligands. The results revealed the residues that contribute to the ligand binding pocket and demonstrated that Trp8-Lys9 (the W-K motif) in somatostatin analogs is the key motif in stabilizing the bottom part of the binding pocket. In this review, we discuss the recent findings related to the structural analysis of SSTRs and SRLs, the relationships between the structural data and clinical findings, and the future development of novel structure-based therapies.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325005, China
| |
Collapse
|
36
|
Matsoukas MT, Ciruela-Jardí M, Gallo M, Ferre S, Andreu D, Casadó V, Pardo L, Moreno E. Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB 1 and Serotonin 5HT 2A Receptors. J Med Chem 2025; 68:261-269. [PMID: 39726149 PMCID: PMC11726681 DOI: 10.1021/acs.jmedchem.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Activation of cannabinoid CB1 receptors (CB1R) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CB1R and the serotonin 5HT2A receptor (5HT2AR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CB1R, which are predicted to bind 5HT2AR and alter the stability of the CB1R-5HT2AR heteromer, have been shown to avert CB1R agonist-induced cognitive impairment while preserving analgesia. Using these peptides as templates, we have now designed nonpeptidic small molecules that prevent CB1R-5HT2AR heteromerization in bimolecular fluorescence complementation assays and the heteromerization-dependent allosteric modulations in cell signaling experiments. These results provide proof-of-principle for the design of optimized ligand-based disruptors of the CB1R-5HT2AR heteromer, opening new perspectives for in vivo studies.
Collapse
MESH Headings
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/chemistry
- Ligands
- Humans
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/chemistry
- Drug Design
- HEK293 Cells
- Protein Multimerization/drug effects
- Structure-Activity Relationship
- Animals
- Small Molecule Libraries/pharmacology
- Small Molecule Libraries/chemistry
Collapse
Affiliation(s)
- Minos-Timotheos Matsoukas
- Department
of Biomedical Engineering, University of
West Attica, Ag. Spyridonos, Egaleo 12243, Greece
| | - Marc Ciruela-Jardí
- Laboratori
de Medicina Computacional, Unitat de Bioestadística, Facultat
de Medicina, Universitat Autónoma
de Barcelona, Bellaterra 08193, Spain
- Department
of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona
(IBUB),University of Barcelona, Barcelona 08028, Spain
| | - Maria Gallo
- Department
of Medicine and Life Sciences (MELIS-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Sergi Ferre
- Integrative
Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of
Health, Baltimore, Maryland 21224, United
States
| | - David Andreu
- Department
of Medicine and Life Sciences (MELIS-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Vicent Casadó
- Department
of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona
(IBUB),University of Barcelona, Barcelona 08028, Spain
| | - Leonardo Pardo
- Laboratori
de Medicina Computacional, Unitat de Bioestadística, Facultat
de Medicina, Universitat Autónoma
de Barcelona, Bellaterra 08193, Spain
| | - Estefanía Moreno
- Department
of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona
(IBUB),University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
37
|
Vögele M, Thomson NJ, Truong ST, McAvity J, Zachariae U, Dror RO. Systematic analysis of biomolecular conformational ensembles with PENSA. J Chem Phys 2025; 162:014101. [PMID: 39745157 PMCID: PMC11698571 DOI: 10.1063/5.0235544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Atomic-level simulations are widely used to study biomolecules and their dynamics. A common goal in such studies is to compare simulations of a molecular system under several conditions-for example, with various mutations or bound ligands-in order to identify differences between the molecular conformations adopted under these conditions. However, the large amount of data produced by simulations of ever larger and more complex systems often renders it difficult to identify the structural features that are relevant to a particular biochemical phenomenon. We present a flexible software package named Python ENSemble Analysis (PENSA) that enables a comprehensive and thorough investigation into biomolecular conformational ensembles. It provides featurization and feature transformations that allow for a complete representation of biomolecules such as proteins and nucleic acids, including water and ion binding sites, thus avoiding the bias that would come with manual feature selection. PENSA implements methods to systematically compare the distributions of molecular features across ensembles to find the significant differences between them and identify regions of interest. It also includes a novel approach to quantify the state-specific information between two regions of a biomolecule, which allows, for example, tracing information flow to identify allosteric pathways. PENSA also comes with convenient tools for loading data and visualizing results, making them quick to process and easy to interpret. PENSA is an open-source Python library maintained at https://github.com/drorlab/pensa along with an example workflow and a tutorial. We demonstrate its usefulness in real-world examples by showing how it helps us determine molecular mechanisms efficiently.
Collapse
Affiliation(s)
- Martin Vögele
- Authors to whom correspondence should be addressed: and
| | - Neil J. Thomson
- Department of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sang T. Truong
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Jasper McAvity
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | | | - Ron O. Dror
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
38
|
Tyson AS, Khan S, Motiwala Z, Han GW, Zhang Z, Ranjbar M, Styrpejko D, Ramos-Gonzalez N, Woo S, Villers K, Landaker D, Kenakin T, Shenvi R, Majumdar S, Gati C. Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes. Nat Chem Biol 2025:10.1038/s41589-024-01812-0. [PMID: 39775170 DOI: 10.1038/s41589-024-01812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist. The pharmacological impact of agonist-free receptor-G protein complexes is poorly understood. Here we present biochemical evidence that certain κ-opioid receptor (KOR) inverse agonists can act via KOR-Gi protein complexes. To investigate this phenomenon, we determined cryo-EM structures of KOR-Gi protein complexes with three inverse agonists: JDTic, norBNI and GB18, corresponding to structures of inverse agonist-bound GPCR-G protein complexes. Remarkably, the orthosteric binding pocket resembles the G protein-free 'inactive' receptor conformation, while the receptor remains coupled to the G protein. In summary, our work challenges the canonical model of receptor antagonism and offers crucial insights into GPCR pharmacology.
Collapse
Affiliation(s)
- Aaliyah S Tyson
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Saif Khan
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zenia Motiwala
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Amgen Inc., Thousand Oaks, CA, USA
| | - Gye Won Han
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Zixin Zhang
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohsen Ranjbar
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Daniel Styrpejko
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nokomis Ramos-Gonzalez
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Stone Woo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Kelly Villers
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Delainey Landaker
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ryan Shenvi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Cornelius Gati
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Thomson NJ, Zachariae U. Mechanism of negative μ-opioid receptor modulation by sodium ions. Structure 2025; 33:196-205.e2. [PMID: 39536757 DOI: 10.1016/j.str.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Negative allosteric modulation of G-protein coupled receptors (GPCRs) by Na+ ions was first described in the 1970s for opioid receptors (ORs) and has subsequently been detected for most class A GPCRs. In high-resolution structures of inactive-state class A GPCRs, a Na+ ion binds to a conserved pocket near residue D2.50, whereas active-state structures of GPCRs are incompatible with Na+ binding. Correspondingly, Na+ diminishes agonist affinity, stabilizes the receptors in the inactive state, and reduces basal signaling. We applied a mutual-information based analysis to μs-timescale biomolecular simulations of the μ-opioid receptor (μ-OR). Our results reveal that Na+ binding is coupled to a water wire linking the Na+ binding site with the agonist binding pocket and to rearrangements in polar networks propagating conformational changes to the agonist and G-protein binding sites. These findings provide a new mechanistic link between the presence of the ion, altered agonist affinity, receptor deactivation, and lowered basal signaling levels.
Collapse
Affiliation(s)
- Neil J Thomson
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
40
|
van Aalst EJ, Wylie BJ. An in silico framework to visualize how cancer-associated mutations influence structural plasticity of the chemokine receptor CCR3. Protein Sci 2025; 34:e70013. [PMID: 39723881 DOI: 10.1002/pro.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein Coupled Receptors (GPCRs) are the largest family of cell surface receptors in humans. Somatic mutations in GPCRs are implicated in cancer progression and metastasis, but mechanisms are poorly understood. Emerging evidence implicates perturbation of intra-receptor activation pathway motifs whereby extracellular signals are transmitted intracellularly. Recently, sufficiently sensitive methodology was described to calculate structural strain as a function of missense mutations in AlphaFold-predicted model structures, which was extensively validated on experimental and predicted structural datasets. When paired with Molecular Dynamics (MD) simulations, these tools provide a facile approach to screen mutations in silico. We applied this framework to calculate the structural and dynamic effects of cancer-associated mutations in the chemokine receptor CCR3, a Class A GPCR involved in cancer and autoimmune disorders. Residue-residue contact scoring refined effective strain results, highlighting significant remodeling of inter- and intra-motif contacts along the highly conserved GPCR activation pathway network. We then integrated AlphaFold-derived predicted Local Distance Difference Test scores with per-residue Root Mean Square Fluctuations and activation pathway Contact Analysis (CONAN) from coarse grain MD simulations to identify statistically significant changes in receptor dynamics upon mutation. Finally, analysis of negative control mutants suggests false positive results in AlphaFold pipelines should be considered but can be mitigated with stricter control of statistical analysis. Our results indicate selected mutants influence structural plasticity of CCR3 related to ligand interaction, activation, and G protein coupling, using a framework that could be applicable to a wide range of biochemically relevant protein targets following further validation.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
41
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
42
|
Picard LP, Orazietti A, Tran DP, Tucs A, Hagimoto S, Qi Z, Huang SK, Tsuda K, Kitao A, Sljoka A, Prosser RS. Balancing G protein selectivity and efficacy in the adenosine A 2A receptor. Nat Chem Biol 2025; 21:71-79. [PMID: 39085516 DOI: 10.1038/s41589-024-01682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/23/2024] [Indexed: 08/02/2024]
Abstract
The adenosine A2A receptor (A2AR) engages several G proteins, notably Go and its cognate Gs protein. This coupling promiscuity is facilitated by a dynamic ensemble, revealed by 19F nuclear magnetic resonance imaging of A2AR and G protein. Two transmembrane helix 6 (TM6) activation states, formerly associated with partial and full agonism, accommodate the differing volumes of Gs and Go. While nucleotide depletion biases TM7 toward a fully active state in A2AR-Gs, A2AR-Go is characterized by a dynamic inactive/intermediate fraction. Molecular dynamics simulations reveal that the NPxxY motif, a highly conserved switch, establishes a unique configuration in the A2AR-Go complex, failing to stabilize the helix-8 interface with Gs, and adoption of the active state. The resulting TM7 dynamics hamper G protein coupling, suggesting kinetic gating may be responsible for reduced efficacy in the noncognate G protein complex. Thus, dual TM6 activation states enable greater diversity of coupling partners while TM7 dynamics dictate coupling efficacy.
Collapse
Affiliation(s)
- Louis-Philippe Picard
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
| | | | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Sari Hagimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Zhenzhou Qi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Shuya Kate Huang
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Adnan Sljoka
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - R Scott Prosser
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, Andres F, Kondo Y, Stipp R, Wranik M, Khusainov G, Carrillo M, Kekilli D, Nan J, Gonzalez A, Cheng R, Neidhart W, Weinert T, Leonarski F, Dworkowski F, Kepa M, Wachtveitl J, Hennig M, Standfuss J. Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography. Nat Commun 2024; 15:10837. [PMID: 39738009 DOI: 10.1038/s41467-024-55109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A2A receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational approach based on UV/Vis spectroscopy, time-resolved absorption spectroscopy, differential scanning fluorimetry and cryo-crystallography, we identified compounds suitable for time-resolved serial crystallography. Our analysis of millisecond-scale dynamics revealed how trans-to-cis isomerization shifts selected istradefylline derivatives within the binding pocket. Depending on the chemical nature of the ligand, interactions between extracellular loops 2 and 3, acting as a lid on the binding pocket, are disrupted and rearrangement of the orthosteric binding pocket is invoked upon ligand dissociation. This innovative approach provides insights into GPCR dynamics at the atomic level, offering potential for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Hannah Glover
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
- Department of Chemistry, University of South Florida, Tampa, USA
| | | | - Fabio Andres
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | - Yasushi Kondo
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Robin Stipp
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | | | | | - Demet Kekilli
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Jie Nan
- MaxIV Laboratory, Lund University, Lund, Sweden
| | | | - Robert Cheng
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | | | | | | | | | - Michal Kepa
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
44
|
Feng C, Liu R, Brooks R, Wang X, Jespers W, Gorostiola González M, Westen GJPV, Danen EHJ, Heitman LH. The effect of cancer-associated mutations on ligand binding and receptor function - A case for the 5-HT 2C receptor. Eur J Pharmacol 2024; 985:177081. [PMID: 39481631 DOI: 10.1016/j.ejphar.2024.177081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The serotonin 5-HT2C receptor is a G protein-coupled receptor (GPCR) mainly expressed in the central nervous system. Besides regulating mood, appetite, and reproductive behavior, it has been identified as a potential target for cancer treatment. In this study, we aimed to investigate the effects of cancer patient-derived 5-HT2C receptor mutations on ligand binding and receptor functionality. By filtering the sequencing data from the Genomic Data Commons data portal (GDC), we selected 12 mutations from multiple cancer types. We found that the affinity of the endogenous agonist serotonin (5-HT) and inverse agonist mesulergine were both drastically decreased by mutations L209HECL2 and F328S6.52, which are located in the orthosteric binding pocket. In the calcium-flux assay, the potency of 5-HT was decreased at F328S6.52, while a trend of increased efficacy was observed. In contrast, 5-HT displayed higher affinity at E306K6.30 and E306A6.30, while a trend of decreased efficacy was observed. These two mutations may disrupt the conserved ionic interaction between E6.30 and R3.50, and thus increase the constitutive activity of the receptor. The inhibitory potency of mesulergine was increased at E306A6.30 but not E306K6.30. Lastly, P365H7.50 decreased the expression level of the receptor by more than ten-fold, which prevented further functional analyses. This study shows that cancer-associated mutations of 5-HT2C receptor have diverse effects on ligand binding and function. Such mutations may affect serotonin-mediated signaling in tumor cells as well as treatment strategies targeting this receptor.
Collapse
Affiliation(s)
- Chenlin Feng
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands; Oncode Institute, 2333 CC, Leiden, the Netherlands.
| | - Rongfang Liu
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Reno Brooks
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Xuesong Wang
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Willem Jespers
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Marina Gorostiola González
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands; Oncode Institute, 2333 CC, Leiden, the Netherlands.
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Erik H J Danen
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands; Oncode Institute, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
45
|
Gozzi M, Malfacini D, Albanese V, Pacifico S, Preti D, Guerrini R, Calò G, Ciancetta A. Probing non-peptide agonists binding at the human nociceptin/orphanin FQ receptor: a molecular modelling study. RSC Med Chem 2024:d4md00747f. [PMID: 39790123 PMCID: PMC11707527 DOI: 10.1039/d4md00747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
The N/OFQ-NOP receptor is a fascinating peptidergic system with the potential to be exploited for the development of analgesic drugs devoid of side effects associated with classical opioid signalling modulation. To date, up to four X-ray and cryo-EM structures of the NOP receptor in complex with the endogenous peptide agonist N/OFQ and three small molecule antagonists have been solved and released. Despite the available structural information, the details of selective small molecule agonist binding to the NOP receptor in the active state remain elusive. In this study, by leveraging the available structural information and using N/OFQ(1-13)-NH2 as a reference compound, we developed a computational protocol based on docking followed by short molecular dynamics (MD) simulations that can suggest small molecule agonist binding modes at the NOP receptor that are reproducible and stable over time in the solvated membrane-embedded receptor active state and in agreement with known structure-activity relationship (SAR) data.
Collapse
Affiliation(s)
- Matteo Gozzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara 44121 Ferrara Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Padova 35131 Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences, University of Ferrara 44121 Ferrara Italy
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara 44121 Ferrara Italy
| | - Delia Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara 44121 Ferrara Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara 44121 Ferrara Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Padova 35131 Italy
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara 44121 Ferrara Italy
| |
Collapse
|
46
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
47
|
Murali S, Aradhyam GK. Divergent roles of DRY and NPxxY motifs in selective activation of downstream signalling by the apelin receptor. Biochem J 2024; 481:1707-1722. [PMID: 39513765 DOI: 10.1042/bcj20240320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
G protein-coupled receptors (GPCRs) serve as critical communication hubs, translating a wide range of extracellular signals into intracellular responses that govern numerous physiological processes. In class-A GPCRs, conserved motifs mediate conformational changes of the active states of the receptor, and signal transduction is achieved by selectively binding to Gα proteins and/or adapter protein, arrestin. Apelin receptor (APJR) is a class-A GPCR that regulates a wide range of intracellular signalling cascades in response to apelin and elabela peptide ligands. Understanding how conserved motifs within APJR mediate activation and signal specificity remains unexplored. This study focuses on the functional roles of the DRY and NPxxY motifs within APJR by analyzing their impact on downstream signaling pathways across the receptor's conformational ensembles. Our findings provide compelling evidence that mutations within the conserved DRY and NPxxY motifs of APJR significantly alter its conformational preferences where modification of DRY motif leads to abrogation of G-protein coupling and mutation of NPxxY motif causing abolition of β-arrestin-2 recruitment. These observations shed light on the importance of these motifs in APJR activation and its potential for functional selectivity, highlighting the role of DRY/NPxxY as conformational switches of APJR signalling.
Collapse
Affiliation(s)
- Subhashree Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
48
|
Cannariato M, Fanunza R, Zizzi EA, Miceli M, Di Benedetto G, Deriu MA, Pallante L. Exploring TAS2R46 biomechanics through molecular dynamics and network analysis. Front Mol Biosci 2024; 11:1473675. [PMID: 39687570 PMCID: PMC11646861 DOI: 10.3389/fmolb.2024.1473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Understanding the intricate interplay between structural features and signal-processing events is crucial for unravelling the mechanisms of biomolecular systems. G protein-coupled receptors (GPCRs), a pervasive protein family in humans, serve a wide spectrum of vital functions. TAS2Rs, a subfamily of GPCRs, play a primary role in recognizing bitter molecules and triggering events leading to the perception of bitterness, a crucial defence mechanism against spoiled or poisonous food. Beyond taste, TAS2Rs function is associated with many diseases as they are expressed in several extra-oral tissues. Given that the precise functioning mechanisms of TAS2R remain poorly understood, this study employed molecular dynamics simulations combined with network-based analysis to investigate local conformational changes and global structural correlations in different states of the receptor. The focus was on the human TAS2R46 bitter taste receptor, recently resolved experimentally, both in the presence and absence of strychnine, a known bitter agonist. The results showed that the ligand-bound state of the receptor exhibited more correlated dynamics compared to the apo state, and the presence of the agonist mediated the allosteric network between two helices (TM3 and TM6) which mainly convey the signal transferring from the extracellular to the intracellular region. By elucidating the hallmarks of the conformational changes and allosteric network of TAS2R46 under varying conditions, this study has enabled the identification of the unique structural and dynamics features of this receptor, thereby establishing a foundation for a more profound characterisation of this intriguing class of receptors.
Collapse
Affiliation(s)
- Marco Cannariato
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Riccardo Fanunza
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Eric A. Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcello Miceli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Marco A. Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Lorenzo Pallante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
49
|
Guccione C, Gervasoni S, Öztürk I, Bosin A, Ruggerone P, Malloci G. Exploring key features of selectivity in somatostatin receptors through molecular dynamics simulations. Comput Struct Biotechnol J 2024; 23:1311-1319. [PMID: 39660216 PMCID: PMC11630666 DOI: 10.1016/j.csbj.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 12/12/2024] Open
Abstract
Somatostatin receptors (SSTRs) are widely distributed throughout the human body and play crucial roles in various physiological processes. They are recognized as key targets for both radiotherapy and radiodiagnosis due to their overexpression in several cancer types. However, the discovery and design of selective drugs for each of the five isoforms have been significantly hindered by the lack of complete structural information. In this study, we conducted a systematic computational analysis of all five SSTRs in complex with the endogenous ligand somatostatin to elucidate their structural and dynamic features. We thoroughly characterized each isoform using available experimental structures for SSTR2 and SSTR4, as well as AlphaFold2 models for SSTR1, SSTR3, and SSTR5. By performing multi-copy μs-long molecular dynamics simulations, we examined the differences and similarities in dynamical behavior and somatostatin binding among all SSTRs. Our analysis focused on understanding the opening and closing movements of the extracellular loop 2, which are crucial for ligand binding and recognition. Interestingly, we observed a unique conformation of somatostatin within the binding pocket of SSTR5 in which the loop can partially close, as compared to the other isoforms. Fingerprint analyses provided distinct interaction patterns of somatostatin with all receptors, thus enabling precise guidelines for the discovery and development of more selective somatostatin-based pharmaceuticals tailored for precision medicine therapies.
Collapse
Affiliation(s)
- C. Guccione
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - S. Gervasoni
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - I. Öztürk
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - A. Bosin
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - P. Ruggerone
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - G. Malloci
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| |
Collapse
|
50
|
Salve BG, Sharma S, Vijay N. Evolutionary diversity of CXCL16-CXCR6: Convergent substitutions and recurrent gene loss in sauropsids. Immunogenetics 2024; 76:397-415. [PMID: 39400711 DOI: 10.1007/s00251-024-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The CXCL16-CXCR6 axis is crucial for regulating the persistence of CD8 tissue-resident memory T cells (TRM). CXCR6 deficiency lowers TRM cell numbers in the lungs and depletes ILC3s in the lamina propria, impairing mucosal defence. This axis is linked to diseases like HIV/SIV, cancer, and COVID-19. Together, these highlight that the CXCL16-CXCR6 axis is pivotal in host immunity. Previous studies of the CXCL16-CXCR6 axis found genetic variation among species but were limited to primates and rodents. To understand the evolution and diversity of CXCL16-CXCR6 across vertebrates, we compared approximately 400 1-to-1 CXCR6 orthologs spanning diverse vertebrates. The unique DRF motif of CXCR6 facilitates leukocyte adhesion by interacting with cell surface-expressed CXCL16 and plays a key role in G-protein selectivity during receptor signalling; however, our findings show that this motif is not universal. The DRF motif is restricted to mammals, turtles, and frogs, while the DRY motif, typical in other CKRs, is found in snakes and lizards. Most birds exhibit the DRL motif. These substitutions at the DRF motif affect the receptor-Gi/o protein interaction. We establish recurrent CXCR6 gene loss in 10 out of 36 bird orders, including Galliformes and Passeriformes, Crocodilia, and Elapidae, attributed to segmental deletions and/or frame-disrupting changes. Notably, single-cell RNA sequencing of the lung shows a drop in TRM cells in species with CXCR6 loss, suggesting a possible link. The concurrent loss of ITGAE, CXCL16, and CXCR6 in chickens may have altered CD8 TRM cell abundance, with implications for immunity against viral diseases and vaccines inducing CD8 TRM cells.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|