1
|
Liu Q, Song M, Wang Y, Zhang P, Zhang H. CCL20-CCR6 signaling in tumor microenvironment: Functional roles, mechanisms, and immunotherapy targeting. Biochim Biophys Acta Rev Cancer 2025; 1880:189341. [PMID: 40348067 DOI: 10.1016/j.bbcan.2025.189341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Chemokine CC motif ligand 20 (CCL20) is a molecule with immunomodulatory properties that is involved in the regulation of diseases such as chronic inflammation, autoimmune diseases, and cancer. It operates by binding to its specific receptor, CC chemokine receptor type 6 (CCR6), and activating a complex intracellular signaling network. Building on its established role in inflammatory diseases, recent research has expanded our understanding of CCL20 to encompass its critical contributions to the tumor microenvironment (TME), highlighting its significance in cancer progression. Numerous studies have emphasized its prominent role in regulating immune responses. Consequently, Monoclonal antibodies against CCL20 and inhibitors of CCR6 have been successfully developed to block downstream signaling, making the CCL20-CCR6 axis a promising and critical target in the TME. This offers potential immunotherapeutic strategies for cancers. In this review, we summarize the biological consequences of CCL20-CCR6 mediated signaling, its role and mechanisms in the TME, and its potential applications. We suggest that the CCL20-CCR6 axis may be a novel biomarker for tumor diagnosis and prognosis, as well as a therapeutic target in various cancers.
Collapse
Affiliation(s)
- Qi Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Mingyuan Song
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Lei S, Chen R, Shi H, Zhou S, She Y. lncRNA AK159072 Promotes Myoblast Proliferation and Muscle Regeneration Through Activation of Akt/Foxo1 Pathway. J Biochem Mol Toxicol 2025; 39:e70292. [PMID: 40341721 DOI: 10.1002/jbt.70292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 03/19/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
Long non-coding RNAs (lncRNAs) are significant regulators of myoblast proliferation, migration and regeneration. In our previous research, we identified that lncRNA AK159072 was differentially expressed during myoblast development. In this study, we would like to explore the regulatory role and the mechanisms of AK159072 in proliferation. We discovered that AK159072 was increasingly expressed during myoblast proliferation and was located in both the nucleus and cytoplasm of proliferating C2C12 myoblasts. Overexpression of AK159072 promoted the expression of proliferation-related genes c-Myc, cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6 in C2C12 myoblasts. Additionally, the cell viability and EdU-positive cells were increased, while the wound size was decreased after overexpression AK159072. In contrast, cell proliferation was attenuated when AK159072 was successfully silenced. Furthermore, the cross sectional area (CSA) and proliferative markers were decreased after knockdown of AK159072 in the mouse hind leg muscles with CTX-induced injury in vivo, indicating that knockdown of AK159072 may delay muscle regeneration. The study further demonstrated that Akt/Foxo1 pathway mediated the effects of AK159072 overexpression and knockdown in myoblasts. Taken together, our results suggested that AK159072 may regulate myoblast proliferation and muscle regeneration via Akt/Foxo1 pathway. The study suggestd that modulating the expression of AK159072 could be a potential therapeutic strategy for muscle injuries, this could have significant clinical relevance for conditions such as muscular dystrophy, sarcopenia, and other muscle disorders.
Collapse
Affiliation(s)
- Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Jiang J, Chen H, Zhao C, Li T, Zhang C, Ma L, Su H, Ma L, Duan Z, Si Q, Chuang TH, Chen C, Luo Y. PRTN3 promotes IL33/Treg-mediated tumor immunosuppression by enhancing the M2 polarization of tumor-associated macrophages in lung adenocarcinoma. Cancer Lett 2025; 616:217584. [PMID: 39993649 DOI: 10.1016/j.canlet.2025.217584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The immunosuppressive tumor microenvironment (TME) shaped by tumor-associated macrophages (TAMs) is essential for lung adenocarcinoma (LUAD) immune tolerance and tumor progression. Here, we first reported that proteinase 3 (PRTN3) promoted the alternative activation (M2) of TAMs and enhanced IL33/regulatory T cells (Tregs)-mediated tumor immunosuppression in LUAD. Firstly, clinical analysis revealed PRTN3 was highly expressed in TAMs and correlated with the tumor progression and poor prognosis in LUAD patients. Meanwhile, by using the myeloid cells-specific Prtn3-knockout mouse model, we demonstrated Prtn3 deficiency in macrophages remolded the immunosuppressive TME and suppressed tumor growth. The mechanism studies uncovered a novel signaling pathway that PRTN3 up-regulated IL33 expression in TAMs by suppressing AKT-mediated ubiquitinated degradation of FOXO1, which subsequently activated Il33 transcription. Furthermore, lack of PRTN3 or FOXO1 in macrophages greatly restrained IL33-induced Treg differentiation. Importantly, selective knockout of Prtn3 in macrophages significantly enhanced the antitumor effect of anti-PD1 therapy in the mouse model of LUAD. Thus, our work demonstrated that PRTN3 in macrophages, served as a key immunoregulator, contributed to impede the antitumor immune response through reinforcing the TAMs/Tregs crosstalk, which provided valuable insights to improve the immunotherapeutic effect by functional remodeling of TAMs to alleviate immunosuppression in LUAD.
Collapse
Affiliation(s)
- Jiayu Jiang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China
| | - Huilin Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chunxing Zhao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chen Zhang
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China; The School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lingyu Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Huifang Su
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China
| | - Lei Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Zhunan, Taiwan
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China.
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, 213149, China.
| |
Collapse
|
4
|
Zhou J, Xu Z, Yu Y, Zhu B, Xing Q. FOXM1 could serve as a bridge mediating prognosis and immunity for clear cell renal cell carcinoma via single-cell and bulk RNA-sequencing. Discov Oncol 2025; 16:626. [PMID: 40293585 PMCID: PMC12037465 DOI: 10.1007/s12672-025-02438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND In the development of several cancers, the Forkhead Box M1 (FOXM1) is crucial. The relationship between the immune system and FOXM1 in renal cell carcinoma (ccRCC), which has been verified by bulk RNA sequencing and scRNA sequencing, is the primary subject of this research. METHOD Publicly available data related to FOXM1 and ccRCC were extracted from The Cancer Genome Atlas (TCGA) database. The impact of FOXM1 on the prognosis of ccRCC was examined using Cox regression analysis. Results were verified by immunohistochemistry and quantitative real-time PCR (qRT-PCR). Additionally, single-cell sequencing data were analyzed. RESULTS When compared to para-carcinoma tissues, the expression of FOXM1 was considerably higher in ccRCC tissues. Patients with elevated FOXM1 expression had lower survival rates. FOXM1 may be a standalone prognostic factor for ccRCC, according to results of univariate and multivariate Cox regression studies. Reduced FOXM1 expression was linked to higher immunotherapy sensitivity, according to immunocorrelation analysis. This suggests FOXM1 may mediate immunotherapy resistance in ccRCC. Additionally, FOXM1 showed strong associations with tumor mutation load, microsatellite instability, and antitumor immunity. These results imply FOXM1 may regulate antitumor immunity in the ccRCC microenvironment. Consistent results from immunohistochemistry, PCR, and single-cell RNA sequencing confirmed upregulated FOXM1 expression in ccRCC. CONCLUSIONS According to the findings, FOXM1 might be used as a stand-alone prognostic biomarker for ccRCC. Moreover, FOXM1 has exhibited robust correlations with microsatellite instability, tumor mutation burden, immune response, and immunotherapy efficacy. FOXM1 may promote ccRCC pathogenesis partly by suppressing antitumor immunity and mediating immunotherapy resistance.
Collapse
Affiliation(s)
- Jianhua Zhou
- Department of Urology, Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu, China
| | - Zhuxian Xu
- Department of Urology, Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), No. 881 Yonghe Road, Nantong, 226001, Jiangsu, China.
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Li L, Xiao Y, Wen W, Liu Q, Wei L, Liu P, Li M. The role of macrophages in polycystic ovary syndrome: A review. Medicine (Baltimore) 2025; 104:e42228. [PMID: 40295243 PMCID: PMC12040014 DOI: 10.1097/md.0000000000042228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder among fertile women, which is influenced by genetics and environment. A recent study revealed that PCOS patients were in a chronic inflammatory state, and they had abnormally activated macrophages. This paper introduces the relationship between PCOS and macrophages. The forkhead box protein O1 (FOXO-1), migration inhibitory factor, sympathetic conservation disorder, and vitamin D are believed to influence macrophages in PCOS. There is evidence that PCOS-associated abnormalities are associated with macrophages, including insulin resistance, obesity, hyperandrogenism (HA), hyperhomocysteinemia (HHcy), cardiometabolic disorder and gut microbiota dysbiosis. This review summarizes the research status of macrophages in PCOS. Macrophages might be a potential PCOS treatment candidate.
Collapse
Affiliation(s)
- Li Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Yubo Xiao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Wenwei Wen
- Department of Orthopedics, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Qi Liu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Le Wei
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Pinyue Liu
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Ming Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
6
|
Peng X, Han J, Huang J, Zhou L, Chen X, Zhou W. A CDKN2B-Associated Immune Prognostic Model for Predicting Immune Cell Infiltration and Prognosis in Esophageal Carcinoma. Clin Exp Gastroenterol 2025; 18:41-54. [PMID: 40265174 PMCID: PMC12013638 DOI: 10.2147/ceg.s510078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Objective Studies have indicated that cyclin dependent protein kinase inhibitor 2B (CDKN2B) deletion is one of the most common changes in esophageal cancer (EC) which affects its progression and prognosis. This study explored the association between CDKN2B deletion, immunophenotype, and the prognosis of EC. Methods We investigated CDKN2B status and RNA expression, identified differentially expressed immune-associated genes between wild-type CDKN2B (CDKN2BWT) and deleted CDKN2B (CDKN2Bdeletion) in Cancer Genome Atlas (TCGA) EC samples. We also a constructed an immune prognostic model (IPM) based on these genes. Thereafter, the effects of IPM on the immune microenvironment of EC were analyzed. Finally, we established a nomogram by integrating the IPM and other clinical factors. Results CDKN2B deletion leads to downregulation of the immune response in EC. A total of 136 immune-associated genes were identified based on the CDKN2B deletion status, and three genes with remarkable potential as individual targets were selected for model construction. An IPM was developed and validated, it showed good performance in differentiating patients with a low or high risk of poor prognosis, and its predictive ability was independent of traditional clinical features. High-risk patients with EC had increased T follicular helper cells (Tfh) and M0 macrophages, and lower infiltration levels of resting CD4 memory T cells resting, and naive B cells. The nomogram developed for clinical application showed good predictive performance. Conclusions Our results suggested that CDKN2B deletion was associated with the survival and immune microenvironment in EC. IPM is not only an effective indicator of the immune response and prognosis, but also suggest potential targets for immunotherapy in patients with EC.
Collapse
Affiliation(s)
- Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Juping Han
- Department of Gastroenterology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Juan Huang
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Longshu Zhou
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, People’s Republic of China
| | - Xianzhe Chen
- Department of Sixin Street Health Service Centre, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Wen Zhou
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
7
|
Pan C, Zhou Z, Cao J, Zhang L, Cheng T, Li H, Jiang Z, Huang D, Zeng D, Luo Y, Wu J. MACC1 is a potential prognostic biomarker for cancer immunotherapy in lung adenocarcinoma. Carcinogenesis 2025; 46:bgaf015. [PMID: 40117327 DOI: 10.1093/carcin/bgaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/02/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025] Open
Abstract
Our team previously reported that MACC1 levels are closely related to a variety of tumors and the efficacy of immune checkpoint blockade (ICB) therapy. However, the predictive value of MACC1 levels for lung adenocarcinoma (LUAD) immunotherapy has not been studied. This study aimed to investigate the predictive effect of the oncogene MACC1 on ICB reactivity in patients with LUAD. First, the expression patterns and clinical features of MACC1 in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were comprehensively evaluated using R packages. We subsequently assessed the correlations between MACC1 and immunological characteristics in the LUAD tumor microenvironment (TME) using the CIBERSORT algorithm. The results revealed that MACC1 overexpression was significantly correlated with 3 immune checkpoints, 14 tumor-infiltrating immune cells (TIICs), 9 immunomodulators, 5 anticancer immune process activities, and 3 effector genes of TIICs in LUAD. Additionally, on the basis of the prognostic genes from LASSO analysis, we developed the MACC1-related Risk Score (MRRS), which can accurately predict the prognosis and response to cancer immunotherapy in LUAD patients (HR = 3.50, AUC at 1, 2, and 3 years = 0.737, 0.744, and 0.724, respectively). Finally, in vivo experiments revealed that the combination of MACC1 silencing and PD-L1 inhibitors significantly inhibits tumor progression. These findings increase our understanding of MACC1 as a potential prognostic biomarker and potential therapeutic target for cancer immunotherapy. The MRRS may play a critical role in predicting the response of LUAD patients to ICB therapy.
Collapse
Affiliation(s)
- Changqie Pan
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Jun Cao
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Haitao Li
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Zhou Jiang
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Danhui Huang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| |
Collapse
|
8
|
Kwantwi LB, Tandoh T. Focal adhesion kinase-mediated interaction between tumor and immune cells in the tumor microenvironment: implications for cancer-associated therapies and tumor progression. Clin Transl Oncol 2025; 27:1398-1405. [PMID: 39269597 DOI: 10.1007/s12094-024-03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Focal adhesion kinase (FAK) expression has been linked to tumor growth, immunosuppression, metastasis, angiogenesis, and therapeutic resistance through kinase-dependent and kinase scaffolding functions in the nucleus and cytoplasm. Hence, targeting FAK alone or with other agents has gained attention as a potential therapeutic strategy. Moreover, mounting evidence shows that FAK activity can influence the tumor immune microenvironment crosstalk to support tumor progression. Recently, tumor immune microenvironment interaction orchestrators have shown to be promising therapeutic agents for cancer immunotherapies. Therefore, this review highlights how FAK regulates the tumor immune microenvironment interplay to promote tumor immune evasive mechanisms and their potential for combination therapies with standard cancer treatments.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| | - Theophilus Tandoh
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
9
|
Yi Z, Li X, Li Y, Wang R, Zhang W, Wang H, Ji Y, Zhao J, Song J. Multi-cohort validation based on a novel prognostic signature of anoikis for predicting prognosis and immunotherapy response of esophageal squamous cell carcinoma. Front Oncol 2025; 15:1530035. [PMID: 40165896 PMCID: PMC11955476 DOI: 10.3389/fonc.2025.1530035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunotherapy is recognized as an effective and promising treatment modality that offers a new approach to cancer treatment. However, identifying responsive patients remains challenging. Anoikis, a distinct form of programmed cell death, plays a crucial role in cancer progression and metastasis. Thus, we aimed to investigate prognostic biomarkers based on anoikis and their role in guiding immunotherapy decisions for esophageal squamous cell carcinoma (ESCC). By consensus clustering, the GSE53624 cohort of ESCC patients was divided into two subgroups based on prognostic anoikis-related genes (ARGs), with significant differences in survival outcomes between the two subgroups. Subsequently, we constructed an ARGs signature with four genes, and its reliability and accuracy were validated both internally and externally. Additional, different risk groups showed notable variances in terms of immunotherapy response, tumor infiltration, functional enrichment, immune function, and tumor mutation burden. Notably, the effectiveness of the signature in predicting immunotherapy response was confirmed across multiple cohorts, including GSE53624, GSE53625, TCGA-ESCC, and IMvigor210, highlighting its potential utility in predicting immunotherapy response. In conclusion, the ARGs signature has the potential to serve as an innovative and dependable prognostic biomarker for ESCC, facilitating personalized treatment strategies in this field, and may represent a valuable new tool for guiding ESCC immunotherapy decision-making.
Collapse
Affiliation(s)
- Zhongquan Yi
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Yangyang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Rui Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Weisong Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Hao Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yanan Ji
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Jing Zhao
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - JianXiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
10
|
Liu P, Sun Z. Chemokines and their receptors in the esophageal carcinoma tumor microenvironment: key factors for metastasis and progression. Front Oncol 2025; 15:1523751. [PMID: 40134607 PMCID: PMC11933060 DOI: 10.3389/fonc.2025.1523751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Esophageal carcinoma (ESCA) is a highly malignant tumor with the highest incidence in Eastern Asia. Although treatment modalities for ESCA have advanced in recent years, the overall prognosis remains poor, as most patients are diagnosed at an advanced stage of the disease. There is an urgent need to promote early screening for ESCA to increase survival rates and improve patient outcomes. The development of ESCA is closely linked to the complex tumor microenvironment (TME), where chemokines and their receptors play pivotal roles. Chemokines are a class of small-molecule, secreted proteins and constitute the largest family of cytokines. They not only directly regulate tumor growth and proliferation but also influence cell migration and localization through specific receptor interactions. Consequently, chemokines and their receptors affect tumor invasion and metastatic spread. Furthermore, chemokines regulate immune cells, including macrophages and regulatory T cells, within the TME. The recruitment of these immune cells further leads to immunosuppression, creating favorable conditions for tumor growth and metastasis. This review examines the impact of ESCA-associated chemokines and their receptors on ESCA, emphasizing their critical involvement in the ESCA TME.
Collapse
Affiliation(s)
| | - Zhiqiang Sun
- Department of Radiation Oncology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
11
|
Liu JX, Zhang YK, Zhan W, Xie JH, Xu QH, Zhang J, Tai X. USP11 promotes autophagy to attenuate LPS-induced oxidative stress in lung epithelial cells by stabilizing FOXO1 levels. Biochem Biophys Res Commun 2025; 751:151368. [PMID: 39908907 DOI: 10.1016/j.bbrc.2025.151368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is a critical condition characterized by severe inflammation and oxidative stress, leading to high morbidity and mortality. Despite advances in understanding ALI pathophysiology, effective treatment options remain limited. The increasing global burden of ALI, driven by factors such as infections, trauma, and environmental pollutants, emphasizes the urgent need for new therapeutic strategies. This study investigates the role of ubiquitin-specific protease 11 (USP11) in modulating Forkhead box protein O1 (FOXO1) to promote autophagy and alleviate oxidative stress in lung epithelial cells, which could provide novel insights into ALI therapeutic strategies. MATERIALS AND METHODS Bioinformatics were utilized to analyze the expression pattern of USP11 and FOXO1 in ALI, and their functions were detected based on gain- and loss-of function studies in vitro and in vivo. Besides, the effects of USP11 on FOXO1 stability and autophagy were examined through Western blot, immunofluorescence, and co-immunoprecipitation assays. RESULTS USP11 was found to be significantly downregulated in ALI, and its over-expression stabilized FOXO1, enhancing autophagy in lung epithelial cells. USP11 over-expression reduced oxidative stress and inflammatory cytokine production in vitro and in vivo. These results highlight the protective role of the USP11-FOXO1 axis in mitigating ALI pathophysiology. CONCLUSIONS This study identifies USP11 as a key regulator of FOXO1 and autophagy in ALI. The stabilization of FOXO1 through USP11 represents a promising therapeutic strategy for reducing oxidative stress and inflammation in ALI, warranting further clinical investigation.
Collapse
Affiliation(s)
- Jia-Xing Liu
- The First Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yu-Kai Zhang
- The Department of Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Wei Zhan
- The Third Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Jun-Hao Xie
- The Department of Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Qi-Hong Xu
- The Department of Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Jing Zhang
- The First Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Xiang Tai
- The Department of Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
12
|
Hong H, Ding D, Zhang Y, Chen Y, Chen S, Jiang M, Zhang H, Wang Q, Hu Y, He J, Yuan J. Circ_BLNK is a Unique Molecular Marker in Non-small Cell Lung Cancer. Biochem Genet 2025; 63:104-123. [PMID: 38411943 DOI: 10.1007/s10528-023-10661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/30/2023] [Indexed: 02/28/2024]
Abstract
Non-small cell lung cancer (NSCLC) patients are characterized by distant metastasis and poor prognosis. Growing evidence has implied that circular RNAs (circRNAs) are involved in multiple tumor progression, including NSCLC. The objective of the present study was to functionally dissect the role and mechanism of circ_BLNK in NSCLC development and progression. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of circ_BLNK, miR-942-5p, and forkhead box protein O1 (FOXO1) in NSCLC tissues and cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay detected cell proliferation; the protein expression levels were tested by western blot assay; cell apoptosis was measured by flow cytometry, and transwell assay detected cell migration and invasion. The molecular targeting relationship was determined by dual-luciferase reporter assay. The effect of circ_BLNK overexpression on tumor growth was detected by in vivo experiments and immunohistochemistry. Circ_BLNK was dramatically decreased in NSCLC, and overexpression of circ_BLNK inhibited proliferation, migration, and invasion of NSCLC cells and promoted cell apoptosis. Circ_BLNK level was negatively correlated with miR-942-5p expression and positively correlated with FOXO1 expression. Moreover, circ_BLNK acted as a sponge for miR-942-5p, which targeted FOXO1. Rescue assays presented that miR-942-5p reversed the anticancer action of circ_BLNK in NSCLC. Besides that, miR-942-5p inhibition suppressed the oncogenic behaviors, which were attenuated by FOXO1 knockdown. Animal experiments exhibited that circ_BLNK upregulation repressed tumor growth in vivo. Our study demonstrated a novel regulatory mechanism that circ_BLNK/miR-942-5p/FOXO1 axis adjusted non-small cell lung cancer development.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Animals
- Mice
- Apoptosis
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Female
- Male
- Cell Movement
- Mice, Nude
- Middle Aged
Collapse
Affiliation(s)
- Haihua Hong
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Dongxiao Ding
- Department of Thoracic Surgery, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, 315800, Zhejiang, China.
| | - Yonghua Zhang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Yongbin Chen
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Shiyuan Chen
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Maofen Jiang
- Department of Pathology, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, 315800, Zhejiang, China
| | - Hairong Zhang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Qinqin Wang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Yue Hu
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Jianghong He
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Jiawei Yuan
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| |
Collapse
|
13
|
Liang C, Wang S, Wu C, Wang J, Xu L, Wan S, Zhang X, Hou Y, Xia Y, Xu L, Huang X, Xie H. Role of the AKT signaling pathway in regulating tumor-associated macrophage polarization and in the tumor microenvironment: A review. Medicine (Baltimore) 2025; 104:e41379. [PMID: 39889181 PMCID: PMC11789917 DOI: 10.1097/md.0000000000041379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 02/02/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are present in and are important components of the tumor microenvironment (TME). TAMs differentiate into 2 functionally distinct morphologies, classically activated (M1)-type TAMs and alternatively activated (M2)-type TAMs, when stimulated by different cytokines. The 2 types of TAMs exhibit distinct properties and functions. M1 TAMs secrete high levels of pro-inflammatory and chemotactic factors, exerting proinflammatory, antitumor effects. Conversely, M2 TAMs alter the extracellular matrix, facilitate cellular immune escape, and stimulate tumor angiogenesis, thereby promoting anti-inflammatory responses and tumor growth. The ratio of M1 TAMs to M2 TAMs in the TME is closely related to the prognosis of the tumor. Tumor cells and other cells in the TME can regulate the polarization of TAMs and thus promote tumor progression through the secretion of various substances; however, polarized TAMs can also act on various cells in the TME through the secretion of exosomes, thus forming a positive feedback loop. Therefore, modulating the phenotype of TAMs in the TME or blocking the polarization of M2 TAMs might be a new approach for cancer treatment. However, the intracellular signaling pathways involved in the polarization of TAMs are poorly understood. The AKT signaling pathway is an important signaling pathway involved in the polarization, growth, proliferation, recruitment, and apoptosis of TAMs, as well as the action of TAMs on other cells within the TME. This paper reviews the AKT signaling pathway in the polarization of TAMs and the regulation of the TME and provides new ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Changming Liang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Jiawei Wang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Lishuai Xu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Senlin Wan
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Xu Zhang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Yinfen Hou
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
14
|
Wang H, Ma S, Yang Z, Niu R, Zhu H, Li S, Gao S, Li Z, Tian Y. Revolutionizing ESCC prognosis: the efficiency of tumor-infiltrating immune cells (TIIC) signature score. Discov Oncol 2025; 16:65. [PMID: 39833504 PMCID: PMC11747060 DOI: 10.1007/s12672-024-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Patients suffer from esophageal squamous cell carcinoma (ESCC), which is the ninth highly aggressive malignancy. Tumor-infiltrating immune cells (TIIC) exert as major component of the tumor microenvironment (TME), showing possible prognostic value in ESCC. METHODS Transcriptome data and scRNA-seq data of ESCC samples were extracted from the GEO and TCGA databases. Tissue Specific Index (TSI) was defined to identify potential TIIC-RNAs from the TME. Twenty machine learning algorithms were further applied to evaluate the prognostic efficacy of TIIC signature score. Gene colocalization analysis was performed. Differences in CNV on chromosomes and SNP sites of prognostic model genes were calculated. RESULTS The most reliable model of TIIC signature score was developed based on three prognostic TIIC-RNAs. It showed a higher C-index than any other reported prognostic models. ESCC patients with high TIIC signature score showed poorer survival outcomes than low TIIC signature score. The activity of most immune cells decreased with the increase of TIIC score. TIIC signature score showed difference in the expression levels and methylation levels of DEGs. There was also significant different correlation with the degree of CNV amplification and CNV deletion of the immune checkpoint genes. Gene colocalization analysis showed two prognostic model genes (ATP6V0E1 and BIRC2). MR analysis found that rs148710154 and rs75146099 SNP sites of TIIC-RNA gene had a significant correlation between them gastro-oesophageal reflux and ESCC. CONCLUSION TIIC signature score was the first time developed which provided a novel strategy and guidance for the prognosis and immunotherapy of ESCC. It also gave the evidence in the important role of immune cells from the TME in the treatment of cancers.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Radiation Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou People's Hospital, Zhengzhou, 450003, China
| | - Shaowei Ma
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zixin Yang
- Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ren Niu
- Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shaolin Gao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Zhirong Li
- Clinical Laboratory Center, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yanhua Tian
- Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
15
|
Hu G, Guo H, Lu L, Zhang Z, Tang Y, Zuo J, Wang X. Unveiling esophageal cancer treatment mechanisms: network pharmacology and molecular docking of Physcion. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:557-568. [PMID: 39023545 DOI: 10.1007/s00210-024-03283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
This study investigates the effects of Physcion on esophageal cancer and its possible mechanisms of action. Potential Physcion targets were identified using databases. Transcriptomic data from 17 esophageal cancer and adjacent tissues were analyzed to find differentially expressed genes, intersecting with potential targets to select 16 key genes. Their expression and distribution were evaluated in patient sequencing data. Diagnostic potential was assessed through differential gene expression and ROC curves. Pathway enrichment analysis was performed using KEGG, and molecular docking simulations were conducted to assess Physcion's binding affinity to key genes. In vitro assays complemented these findings. A total of 161 drug targets were identified, narrowing down to 16 pivotal genes. Expression patterns were examined across cell populations, and enrichment analysis showed significant PI3K/AKT pathway involvement. Molecular docking indicated strong binding of Physcion to HSP90AA1 and MMP2. In vitro assays confirmed Physcion's dose- and time-dependent impact on esophageal cancer cells, with significant DAPI staining effects. Physcion shows promise as a therapeutic agent for esophageal cancer. The study supports its potential for clinical development and future research in esophageal cancer treatment.
Collapse
Affiliation(s)
- Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Liuyi Lu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - ZongYao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, No. 203 Huai Bin Road, Tian Jia'an District, Huainan, 232007, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
16
|
Zhang B, Li SJ, Yuan H, Cong SS, Zhao SJ, Yang XJ. FOXL2 Knockdown Inhibits the Progression of Endometriosis. Am J Reprod Immunol 2025; 93:e70043. [PMID: 39776079 DOI: 10.1111/aji.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
PROBLEM Endometriosis (EM) is known as a common estrogen-dependent chronic inflammatory disease. Elevated levels of Forkhead box L2 (FOXL2) have been observed in uterine diseases, including EM. However, the molecular mechanism of FOXL2 in EM needs to be further illustrated. This study aimed to investigate the regulatory role of FOXL2 in EM rats and isolated ectopic endometrial stromal cells (EC-ESCs). METHOD OF STUDY FOXL2 knockdown were designed to evaluate the effects of FOXL2 in EM model rats and EC-ESCs. Hematoxylin-eosin (HE) staining was used to evaluate the pathological morphology of ectopic endometrium. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) analysis and immunohistochemistry (IHC) were applied to detect the expression of FOXL2, EM-related genes, and epithelial to mesenchymal transition-related proteins. The proliferation, migration, invasion, and apoptosis of EC-ESCs were determined by 5-ethynyl-2'-deoxyuridine (EDU) assay, Transwell assay, and flow cytometry. RESULTS The FOXL2 level was remarkably higher in the ectopic endometrial tissue than that in the normal endometrial tissue. Knockdown of FOXL2 notably improved the pathological morphology of EM in rats, and decreased expression levels of ER-α, ER-ß, and Cyp19a. Additionally, down-regulation of FOXL2 suppressed cells proliferation, migration and invasion, and stimulated more apoptotic cells in EC-ESCs. Besides, FOXL2-small interfering RNA (FOXL2-siRNA) treatment resulted in enhanced cleaved-Caspase3 protein expression and cleaved-Caspase3/Caspase3 ratio in EC-ESCs. CONCLUSION FOXL2 participates in the occurrence and development of EM through promoting epithelial-mesenchymal transition procession and enhancing the migration and invasion of EC-ESCs, suggesting that FOXL2 may be a new therapeutic target for the EM therapy.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shang-Jin Li
- Department of Obstetrics and Gynecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hua Yuan
- Department of Obstetrics and Gynecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Shan-Shan Cong
- Department of Obstetrics and Gynecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Shao-Jie Zhao
- Department of Obstetrics and Gynecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Wu Y, Xian D, Liu Y, Huang D, Liu Q, Yang S. USP8-Dependent Family Tyrosine Kinase Promotes the Malignant Progression of Esophageal Squamous Cell Carcinoma by Upregulating Protein Tyrosine Kinase 2 Expression. Thorac Cancer 2025; 16:e15489. [PMID: 39702934 PMCID: PMC11739124 DOI: 10.1111/1759-7714.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 11/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a lethal malignancy, and the molecular underpinnings of its aggressive behavior are not fully understood. FYN proto-oncogene, Src family tyrosine kinase (FYN) has been linked to cancer progression, yet its role in ESCC remains elusive. This study investigated the influence of FYN on ESCC malignancy. METHODS Quantitative real-time polymerase chain reaction was used to assess the mRNA expression of FYN, while western blotting and immunohistochemistry (IHC) assays were performed to detect the protein expression of FYN, ubiquitin specific peptidase 8 (USP8) and protein tyrosine kinase 2 (PTK2). Cell viability was measured with a cell counting kit-8 assay, and cell apoptosis was evaluated using flow cytometry. RESULTS FYN expression was increased in ESCC tissues and cells when compared with normal esophageal tissues and normal esophageal epithelial cells. Knockdown of FYN inhibited cell invasion, migration, stem-like traits, and glycolysis, while promoting apoptosis. USP8 was shown to stabilize FYN protein expression through its deubiquitinating activity in ESCC cells. Overexpression of FYN reversed the effects of USP8 silencing on the malignant phenotypes of ESCC cells in vitro and in vivo. FYN upregulated PTK2 expression in both TE1 and KYSE150 cell lines. Furthermore, PTK2 overexpression reversed the effects of FYN silencing on the malignant phenotypes of ESCC cells. Further, USP8 silencing-induced inhibitory effect on PTK2 protein expression was counteracted after FYN overexpression. CONCLUSION USP8-dependent FYN contributed to the malignant progression of ESCC by interacting with PTK2. Targeting this pathway may offer a novel therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Yuechang Wu
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Dubiao Xian
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Yunzhong Liu
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Ding Huang
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Qingfeng Liu
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Shubo Yang
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| |
Collapse
|
18
|
Han T, Tong W, Xie J, Guo X, Zhang L. FOXF2 suppressed esophageal squamous cell carcinoma by reducing M2 TAMs via modulating RNF144A-FTO axis. Int Immunopharmacol 2024; 143:113422. [PMID: 39447407 DOI: 10.1016/j.intimp.2024.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its high invasiveness and low survival. Tumor-associated macrophages (TAMs) are closely associated with the tumor cell proliferation, metastasis and immunosuppression. As a member of the FOX family, forkhead box F2 (FOXF2) was down-regulated in ESCC. However, its role in ESCC and TAMs, as well as the underlying mechanism, remains unclear. We found that differentially expressed genes (DEGs) in ESCC were enriched in proliferation, migration, macrophage and cancer pathways. Among these DEGs, FOXF2 caught our eyes. FOXF2 was down-regulated in ESCC. Overexpression FOXF2 inhibited the proliferation of ESCC cells and the M2 polarization of TAMs, but silenced FOXF2 reversed these results. Notably, FOXF2 promoted the transcription of ring finger protein 144A (RNF144A), which is an E3 ubiquitin ligase, causing the ubiquitination and degradation of FTO Alpha-Ketoglutarate Dependent Dioxygenase (FTO), an N6-methyladenosine (m6A) demethylase. Furthermore, overexpression of FTO abolished the effects of FOXF2 on TAM polarization. In conclusion, FOXF2 alleviates ESCC via promoting the transcription of RNF144A which results in the ubiquitylation and degradation of FTO. Targeting FOXF2/RNF144A/FOT axis might be a possible strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Tianci Han
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Wei Tong
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Junwei Xie
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiaoqi Guo
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
19
|
Arjmand B, Bahadorimonfared A, Jahani Sherafat S, Moravvej H, Rezaei M, Daneshimehr F, Asri N, Farahani M. Comparison of the Efficacy of Photodynamic Therapy Versus Cisplatin Application. J Lasers Med Sci 2024; 15:e67. [PMID: 39949474 PMCID: PMC11822232 DOI: 10.34172/jlms.2024.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 02/16/2025]
Abstract
Introduction: Photodynamic therapy (PDT) is a photochemical treatment that involves the use of light and photosensitizer. This method is applied as a therapeutic approach against several types of cancer. The main aim of this study is to compare the efficacy of PDT with that of cisplatin (a well-known chemotherapy agent) through protein-protein interaction (PPI) network analysis. Methods: Gene expression profiles of human melanoma A375 cells from the Gene Expression Omnibus (GEO) were selected for analysis via directed PPI network analysis. The significant differentially expressed genes (DEGs) were identified and assessed based on co-expression interactions. The critical DEGs were introduced by considering out-degree and in-degree values. Results: Two directed PPI networks for upregulated and downregulated DEGs were constructed. TP53 was identified as a critical upregulated gene in response to cisplatin in comparison with PDT. EGFR, PPARG, MMP9, PTGS2, FOXO1, and RUNX2 were highlighted as the crucial downregulated genes due to the effect of cisplatin on the gene expression of the treated cells. Conclusion: Cisplatin directly targets key cellular functions such as cell growth, differentiation, migration, and invasion. It seems that the combination of cisplatin and PDT is a suitable method for treating cancers because cisplatin targets the key genes responsible for cancer development, while PDT intensifies the effect of cisplatin and reduces its side effects.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Ayad Bahadorimonfared
- Department of Health & Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Sun R, Li S, Ye W, Lu Y. Development of a prognostic model based on lysosome-related genes for ovarian cancer: insights into tumor microenvironment, mutation patterns, and personalized treatment strategies. Cancer Cell Int 2024; 24:419. [PMID: 39702158 DOI: 10.1186/s12935-024-03586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is often associated with an unfavorable prognosis. Given the crucial involvement of lysosomes in tumor advancement, lysosome-related genes (LRGs) hold promise as potential therapeutic targets. METHODS To identify differentially expressed lysosome-related genes (DE-LRGs), we performed a matching analysis between differentially expressed genes (DEGs) in OC and the pool of LRGs. Genes with prognostic significance were analyzed using multiple regression analyses to construct a prognostic risk signature. The model's efficacy was validated through survival analysis in various cohorts. We further explored the model's correlation with clinical attributes, tumor microenvironment (TME), mutational patterns, and drug sensitivity. The quantitative real-time polymerase chain reaction (qRT-PCR) validated gene expression in OC cells. RESULTS A 10-gene prognostic risk signature was established. Survival analysis confirmed its predictive accuracy across cohorts. The signature served as an independent prognostic element for OC. The high-risk and low-risk groups demonstrated notable disparities in terms of immune infiltration patterns, mutational characteristics, and sensitivity to therapeutic agents. The qRT-PCR results corroborated and validated the findings obtained from the bioinformatic analyses. CONCLUSIONS We devised a 10-LRG prognostic model linked to TME, offering insights for tailored OC treatments.
Collapse
Affiliation(s)
- Ran Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Siyi Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Wanlu Ye
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yanming Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
21
|
Li R, Li N, Yang Q, Tong X, Wang W, Li C, Zhao J, Jiang D, Huang H, Fang C, Xie K, Yuan J, Chen S, Li G, Luo H, Gao Z, Wu D, Cui X, Jiang W, Guo L, Ma H, Feng Y. Spatial transcriptome profiling identifies DTX3L and BST2 as key biomarkers in esophageal squamous cell carcinoma tumorigenesis. Genome Med 2024; 16:148. [PMID: 39696540 DOI: 10.1186/s13073-024-01422-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Understanding the stepwise progression of esophageal squamous cell carcinoma (ESCC) is crucial for developing customized strategies for early detection and optimal clinical management. Herein, we aimed to unravel the transcriptional and immunologic alterations occurring during malignant transformation and identify clinically significant biomarkers of ESCC. METHODS Digital spatial profiling (DSP) was performed on 11 patients with early-stage ESCC (pT1) to explore the transcriptional alterations in epithelial, immune cell, and non-immune cell stromal compartments across regions of distinct histology, including normal tissues, low- and high-grade dysplasia, and cancerous tissues. Furthermore, single-cell spatial transcriptomics was performed using the CosMx Spatial Molecular Imaging (SMI) system on 4 additional patients with pT1 ESCC. Immunohistochemical (IHC) analysis was performed on consecutive histological sections of 20 pT1 ESCCs. Additionally, public bulk and single-cell RNA-sequencing (scRNA-seq) datasets were analyzed, and in vitro and in vivo functional studies were conducted. RESULTS Spatial transcriptional reprogramming and dynamic cell signaling pathways that determined ESCC progression were delineated. Increased infiltration of macrophages from normal tissues through dysplasia to cancerous tissues occurred. Macrophage subtypes were characterized using the scRNA-seq dataset. Cell-cell communication analysis of scRNA-seq and SMI data indicated that the migration inhibitory factor (MIF)-CD74 axis may exhibit pro-tumor interactions between macrophages and epithelial cells. DSP, SMI, and IHC data demonstrated that DTX3L expression in epithelial cells and BST2 expression in stromal cells increased gradually with ESCC progression. Functional studies demonstrated that DTX3L or BST2 knockdown inhibited ESCC proliferation and migration and decreased M2 polarization of tumor-associated macrophages. CONCLUSIONS Spatial profiling comprehensively characterized the molecular and immunological hallmarks from normal tissue to ESCC, guiding the way to a deeper understanding of the tumorigenesis and progression of this disease and contributing to the prevention of ESCC. Within this exploration, we uncovered biomarkers that exhibit a robust correlation with ESCC progression, offering potential new avenues for insightful therapeutic approaches.
Collapse
Affiliation(s)
- Rutao Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China.
| | - Qianqian Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xing Tong
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Chang Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dong Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chen Fang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Kai Xie
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shaomu Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbin Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Wei Jiang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Haitao Ma
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China.
| | - Yu Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
22
|
Kuang QX, Huang YQ, Ruan YQ, Lai HZ, Long J, Yan CY, Lei HR, Guo DL, Deng Y, You FM, Jiang YF. New benzophenone analogs from Nigrospora sphaerica and their inhibitory activity against PD-1/PD-L1 interactions. Bioorg Chem 2024; 153:107899. [PMID: 39454494 DOI: 10.1016/j.bioorg.2024.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Four newly identified benzophenone analogs [nigrophenone A-D (1-4)] and a pyrrolidinone analog [nigropyrrolidinone (5)], alongside thirteen known congeners (6-18), were isolated from Nigrospora sphaerica. Transcriptome analysis revealed that 6 might have the potential to modulate T-cell immunity. Quantitative measurements of the binding affinities between eighteen natural molecules and the immunological checkpoint receptors PD-1 and PD-L1 were performed using Surface Plasmon Resonance (SPR). The results of SPR analysis showed that 1-18 have KD values ranging from 1.8 to 99.5 μM for PD-1 and from 10.6 to 99.5 μM for PD-L1. Competitive inhibition studies, employing SPR and ELISA assays, have indicated that compounds 6, 10, 15, and 18 are capable of inhibiting the PD-1/PD-L1 interaction. Additionally, compound 6 exhibited notable in vitro anticancer potency through the augmentation of activating signals and the upregulation of PD-1 expression on CD8+ T cells, concurrently elevating the secretion of IFN-γ and IL-2, thereby inhibiting the proliferation of LLC and MC38 cells and promoting MC38 apoptosis. Moreover, compound 6 modulates the PI3K/Akt pathway, which is a key downstream effector of the PD-1/PD-L1 axis. These compounds are considered promising candidates for more in-depth exploration because they could significantly inhibit PD-1/PD-L1 interactions in tumor immunotherapy.
Collapse
Affiliation(s)
- Qi-Xuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Yu-Qing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Yan-Qiu Ruan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Heng-Zhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Chen-Yi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Hao-Ran Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Da-Le Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China.
| | - Feng-Ming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| | - Yi-Fang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| |
Collapse
|
23
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
24
|
Wang Z, Jin L, Wang J, Tian X, Mi T, Li M, Zhang Z, Wu X, Li M, Liu J, Wang Z, Liu Y, Luo J, Ren C, He D. Recruitment and polarization typing of tumor-associated macrophages is associated with tumor progression and poor prognosis in Wilms tumor patients. PLoS One 2024; 19:e0309910. [PMID: 39531417 PMCID: PMC11556688 DOI: 10.1371/journal.pone.0309910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/17/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Tumor-associated macrophages (TAMs) play a crucial role in shaping various tumor microenvironments. However, their recruitment in Wilms tumor (WT), the predominant malignant renal tumor in children, has been inadequately explored. This retrospective cohort study involved the analysis of 148 WT samples to investigate the recruitment and polarization typing of TAMs in WT tissues. METHODS WT tissues underwent Western blotting (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence (IF) to measure the expression of TAM markers CD68, CD86, and CD163. Statistically analyze the relationship between TAM recruitment levels and patient clinical characteristics, and use Kaplan-Meier curves and the log-rank test to evaluate the association between TAM levels and survival outcomes. RESULTS The findings indicated a positive correlation between the recruitment levels of total macrophages (Mtotal) and M2 tumor-associated macrophages (M2 TAM) in both chemotherapy and non-chemotherapy groups with the clinical stage. Elevated recruitment of Mtotal and M2 TAM in tumor tissues was linked to a poorer prognosis. Notably, patients with persistently higher recruitment of M2 TAM following preoperative chemotherapy exhibited the worst prognosis. CONCLUSIONS The recruitment and polarization typing of TAM exhibit significant differences in WT patients with various stages and prognosis outcomes, suggesting a potential avenue for future diagnosis and treatment of WT.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jinkui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaomao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mujie Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhaoxia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xin Wu
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Maoxian Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jiayan Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhaoying Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yimeng Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Junyi Luo
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chunnian Ren
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
25
|
Zhao C, Liu Z, Peng J, Huang J, Guo J. TRIM47 promotes the Warburg effect and reduces ferroptosis in prostate cancer by FBP1 and FOXO1. Transl Androl Urol 2024; 13:1991-2004. [PMID: 39434735 PMCID: PMC11491198 DOI: 10.21037/tau-23-605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Prostate cancer (PC), a malignant tumor occurring in the male prostate tissue, has a high incidence rate. In this study, we explored the role of tripartite motif 47 (TRIM47) in the progression of PC and its underlying mechanism. Methods PC and paracancerous tissues were collected from Shenzhen Peoples's Hospital. The following methods were employed in this experiment: quantitative polymerase chain reaction (qPCR), immunofluorescent staining, cell counting kit-8 (CCK-8), ethynyl deoxyuridine (EdU), and Western blot. Results The expression levels of TRIM47 were up-regulated in patients with PC. TRIM47 was found to promote cell growth and induce the Warburg effect, while also reducing ferroptosis in PC cells. Conversely, the knockdown of TRIM47 [small interfering RNA, (si)-TRIM47] decreased cell growth and the Warburg effect, while promoting ferroptosis in PC cells. Additionally, TRIM47 was observed to induce the protein expression levels of fructose-1,6-bisphosphatase 1 (FBP1) and forkhead box protein O1 (FOXO1) in PC cells. Further, TRIM47 protein was found to interact with both the FBP1 and FOXO1 proteins in the PC cells. The inhibition of FBP1 attenuated the effects of TRIM47 on the Warburg effect in PC cells, while the inhibition of FOXO1 diminished the effects of TRIM47 on ferroptosis in PC cells. Conclusions Our findings suggest that TRIM47 promotes the Warburg effect of PC by inducing FBP1 and FOXO1. Thus, our findings suggest that targeting TRIM47 could serve as a viable therapeutic strategy for the treatment of PC.
Collapse
Affiliation(s)
- Chubiao Zhao
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Zengqin Liu
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Junming Peng
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Jiansheng Huang
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
26
|
Wu X, Mi T, Jin L, Ren C, Wang J, Zhang Z, Liu J, Wang Z, Guo P, He D. Tumoral EIF4EBP1 regulates the crosstalk between tumor-associated macrophages and tumor cells in MRTK. Eur J Pharmacol 2024; 978:176787. [PMID: 38944176 DOI: 10.1016/j.ejphar.2024.176787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Malignant renal rhabdoid tumor (MRTK) is an aggressive and rare malignancy primarily affecting infants and young children. The intricate interactions within the Tumor Microenvironment (TME) are crucial in shaping MRTK's progression. This study elucidates the significance of tumor-associated macrophages(TAMs) within this milieu and their interplay with eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) in tumor cells, collectively contributing to MRTK's malignant advancement. Through comprehensive analysis of clinical samples and the TARGET database, EIF4EBP1 emerges as a central macrophage-associated gene with robust prognostic implications. Elevated EIF4EBP1 expression correlates with poor prognosis and heightened infiltration of TAMs. Functional validation demonstrates that EIF4EBP1 knockdown in G401 cells significantly attenuates self-proliferation, migration, and invasion. Moreover, EIF4EBP1 regulates macrophage recruitment and M2 polarization through the ERK/P38 MAPK-MIF axis. Notably, M2 macrophages reciprocally foster the malignant behavior of MRTK tumor cells. This study unveils the pivotal role of EIF4EBP1 in propelling MRTK's malignant progression, unraveling a complex regulatory network involving EIF4EBP1 and TAMs. These findings underscore EIF4EBP1 as a promising biomarker and highlight its therapeutic potential in MRTK management.
Collapse
Affiliation(s)
- Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China; Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunan, 650000, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Zhaoyin Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China.
| |
Collapse
|
27
|
Chen L, Zhang W, Shi H, Zhu Y, Chen H, Wu Z, Zhong M, Shi X, Li Q, Wang T. Metabolism score and machine learning models for the prediction of esophageal squamous cell carcinoma progression. Cancer Sci 2024; 115:3127-3142. [PMID: 38992901 PMCID: PMC11462955 DOI: 10.1111/cas.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarkers that can facilitate clinical management and treatment decisions. This study recruited 491 ESCC patients who underwent surgical treatment at Huashan Hospital, Fudan University. We incorporated 14 blood metabolic indicators and identified independent prognostic indicators for overall survival through univariate and multivariate analyses. Subsequently, a metabolism score formula was established based on the biochemical markers. We constructed a nomogram and machine learning models utilizing the metabolism score and clinically significant prognostic features, followed by an evaluation of their predictive accuracy and performance. We identified alkaline phosphatase, free fatty acids, homocysteine, lactate dehydrogenase, and triglycerides as independent prognostic indicators for ESCC. Subsequently, based on these five indicators, we established a metabolism score that serves as an independent prognostic factor in ESCC patients. By utilizing this metabolism score in conjunction with clinical features, a nomogram can precisely predict the prognosis of ESCC patients, achieving an area under the curve (AUC) of 0.89. The random forest (RF) model showed superior predictive ability (AUC = 0.90, accuracy = 86%, Matthews correlation coefficient = 0.55). Finally, we used an RF model with optimal performance to establish an online predictive tool. The metabolism score developed in this study serves as an independent prognostic indicator for ESCC patients.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - WenXin Zhang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Huanying Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Yongjun Zhu
- Department of Cardiovascular Thoracic Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Haifei Chen
- Department of Pharmacy, Baoshan Campus of Huashan HospitalFudan UniversityShanghaiChina
| | - Zimei Wu
- Department of Pharmacy, Baoshan Campus of Huashan HospitalFudan UniversityShanghaiChina
| | - Mingkang Zhong
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaojin Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Qunyi Li
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Tianxiao Wang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
28
|
Zhang JY, Su YH, Wang X, Yao X, Du JZ. Recent Progress on Nanomedicine-Mediated Repolarization of Tumor-Associated Macrophages for Cancer Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2001. [PMID: 39425549 DOI: 10.1002/wnan.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme. The reprogramming of M2-like TAMs toward a tumoricidal M1 phenotype is of particular interest for the restoration of antitumor immunity in cancer immunotherapy. Notably, nanomedicines have shown great potential for cancer therapy due to their unique structures and properties. This review will briefly describe the biological features and roles of TAMs in tumor, and then discuss recent advances in nanomedicine-mediated repolarization of TAMs for cancer immunotherapy. Finally, perspectives on nanomedicine-mediated repolarization of TAMs for effective cancer immunotherapy are also presented.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Yun-He Su
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xu Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Shen J, Wu W, Zhang X, Xie X, Shen W, Wang Q. Cancer-associated fibroblasts promote the malignant development of lung cancer through the FOXO1 protein/LIF signaling. Int J Biol Macromol 2024; 276:133987. [PMID: 39032875 DOI: 10.1016/j.ijbiomac.2024.133987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This paper aims to investigate the current situation of cancer related fibroblasts promoting malignant development of cancer through FOXO1 protein/LIF signal, and explore the strategy of cancer treatment. Recent studies have shown that the expression of the protein forkhead box O1 (FOXO1) is increased in CAFsCAFs (Cancer-associated fibroblasts). This led researchers to investigate whether FOXO1 is involved in the role of CAFs in lung cancer. The results of the study revealed that FOXO1 is indeed upregulated in CAFs, and it positively regulates the transcription of another protein called LIF. Notably, LIF is also upregulated in both CAFs and lung cancer cells. These changes in protein expression were associated with the overexpression of FOXO1 in CAFs. Conversely, silencing FOXO1 in CAFs suppressed their effects on cancer cells and transplanted tumors. The study revealed that the downregulation of LIFR in cancer cells abolished the impact of CAFs overexpressing FOXO1 on cancer cell behavior. This suggests that the FOXO1/LIF signaling pathway is involved in mediating the malignant development of lung cancer induced by CAFs.
Collapse
Affiliation(s)
- Jiannan Shen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wei Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Xiaodong Xie
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wenrong Shen
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Qianghu Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
30
|
Xie C, Chan L, Pang Y, Shang Y, Cao W, Tuohan M, Deng Q, Wang Y, Zhao L, Wang W. Caffeic acid inhibits the tumorigenicity of triple-negative breast cancer cells through the FOXO1/FIS pathway. Biomed Pharmacother 2024; 178:117158. [PMID: 39042963 DOI: 10.1016/j.biopha.2024.117158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) still one of the most challenging sub-type in breast cancer clinical. Caffeic acid (CA) derived from effective components of traditional Chinese herbal medicine has been show potential against TNBCs. Our research has found that CA can inhibit the proliferation of TNBC cells while also suppressing the size of cancer stem cell spheres. Additionally, it reduces reactive oxygen species (ROS) levels and disruption of mitochondrial membrane potential. Simultaneously, CA influences the stemness of TNBC cells by reducing the expression of the stem cell marker protein CD44. Furthermore, we have observed that CA can modulate the FOXO1/FIS signaling pathway, disrupting mitochondrial function, inducing mitochondrial autophagy, and exerting anti-tumor activity. Additionally, changes in the immune microenvironment were detected using a mass cytometer, we found that CA can induce M1 polarization of macrophages, enhancing anti-tumor immune responses to exert anti-tumor activity. In summary, CA can be considered as a lead compound for further research in targeting TNBC.
Collapse
Affiliation(s)
- Chufei Xie
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang 550025, China
| | - Liujia Chan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Yuheng Pang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, 150, Haping Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Yuefeng Shang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, 150, Haping Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Weifang Cao
- Institute of Basic Medicine, Chinese Academy of Medical Science, 5, Third Dongdan Alley, Dongcheng District, Beijing 100000, China
| | - Marmar Tuohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Qian Deng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China.
| | - Lichun Zhao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang 550025, China; Science Experimental Center, Guangxi University of Traditional Chinese Medicine, 13, Wuhe Avenue, Qingxiu District, Nanning 530200, China.
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, 8, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China.
| |
Collapse
|
31
|
Wu B, Li L, Li L, Chen Y, Guan Y, Zhao J. Integration of Bioinformatics and Machine Learning to Identify CD8+ T Cell-Related Prognostic Signature to Predict Clinical Outcomes and Treatment Response in Breast Cancer Patients. Genes (Basel) 2024; 15:1093. [PMID: 39202452 PMCID: PMC11353403 DOI: 10.3390/genes15081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of breast cancer (BC) continues to rise steadily, posing a significant burden on the public health systems of various countries worldwide. As a member of the tumor microenvironment (TME), CD8+ T cells inhibit cancer progression through their protective role. This study aims to investigate the role of CD8+ T cell-related genes (CTRGs) in breast cancer patients. METHODS We assessed the abundance of CD8+ T cells in the TCGA and METABRIC datasets and obtained CTRGs through WGCNA. Subsequently, a prognostic signature (CTR score) was constructed from CTRGs screened by seven machine learning algorithms, and the relationship between the CTR score and TME, immunotherapy, and drug sensitivity was analyzed. Additionally, CTRGs' expression in different cells within TME was identified through single-cell analysis and spatial transcriptomics. Finally, the expression of CTRGs in clinical tissues was verified via RT-PCR. RESULTS The CD8+ T cell-related prognostic signature consists of two CTRGs. In the TCGA and METABRIC datasets, the CTR score appeared to be negatively linked to the abundance of CD8+ T cells, and BC patients with higher risk score show a worse prognosis. The low CTR score group exhibits higher immune infiltration levels, closely associated with inhibiting the tumor microenvironment. Compared with the high CTR score group, the low CTR score group shows better responses to chemotherapy and immune checkpoint therapy. Single-cell analysis and spatial transcriptomics reveal the heterogeneity of two CTRGs in different cells. Compared with the adjacent tissues, CD163L1 and KLRB1 mRNA are downregulated in tumor tissues. CONCLUSIONS This study establishes a robust CD8+ T cell-related prognostic signature, providing new insights for predicting the clinical outcomes and treatment responses of breast cancer patients.
Collapse
Affiliation(s)
- Baoai Wu
- Institute of Physical Education and Sport, Shanxi University, Taiyuan 030006, China; (B.W.); (L.L.); (Y.C.); (Y.G.)
| | - Longpeng Li
- Institute of Physical Education and Sport, Shanxi University, Taiyuan 030006, China; (B.W.); (L.L.); (Y.C.); (Y.G.)
| | - Longhui Li
- Capital University of Physical Education and Sports, Beijing 100191, China;
| | - Yinghua Chen
- Institute of Physical Education and Sport, Shanxi University, Taiyuan 030006, China; (B.W.); (L.L.); (Y.C.); (Y.G.)
| | - Yue Guan
- Institute of Physical Education and Sport, Shanxi University, Taiyuan 030006, China; (B.W.); (L.L.); (Y.C.); (Y.G.)
| | - Jinfeng Zhao
- Institute of Physical Education and Sport, Shanxi University, Taiyuan 030006, China; (B.W.); (L.L.); (Y.C.); (Y.G.)
| |
Collapse
|
32
|
Kolecka-Bednarczyk A, Frydrychowicz M, Budny B, Ruciński M, Dompe C, Gabryel P, Płachno BJ, Ruchała M, Ziemnicka K, Zieliński P, Budna-Tukan J. Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:8642. [PMID: 39201328 PMCID: PMC11354976 DOI: 10.3390/ijms25168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) leads as a primary cause of cancer-related premature mortality in Western populations. This study leverages cutting-edge gene-expression-profiling technologies to perform an in-depth molecular characterization of NSCLC specimens, with the objective of uncovering tumor-specific genomic alterations. By employing DNA microarray analysis, our research aims to refine the classification of NSCLC for early detection, guide molecular-targeted treatment approaches, enhance prognostication, and broaden the scientific understanding of the disease's biology. We identified widespread genomic abnormalities in our samples, including the recurrent loss of chromosomal regions 3p, 5q, 13q, and 21q and the gain of 12p. Furthermore, utilizing Metascape for bioinformatic analysis revealed critical biological pathways disrupted in NSCLC, offering promising leads for novel therapeutic interventions.
Collapse
Affiliation(s)
- Agata Kolecka-Bednarczyk
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Magdalena Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
| | - Claudia Dompe
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Cracow, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Paweł Zieliński
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
33
|
Li P, Ma X, Gu X. The essential roles of lncRNAs/PI3K/AKT axis in gastrointestinal tumors. Front Cell Dev Biol 2024; 12:1442193. [PMID: 39161590 PMCID: PMC11330846 DOI: 10.3389/fcell.2024.1442193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
The role of long noncoding RNA (lncRNA) in tumors, particularly in gastrointestinal tumors, has gained significant attention. Accumulating evidence underscores the interaction between various lncRNAs and diverse molecular pathways involved in cancer progression. One such pivotal pathway is the PI3K/AKT pathway, which serves as a crucial intracellular mechanism maintaining the balance among various cellular physiological processes for normal cell growth and survival. Frequent dysregulation of the PI3K/AKT pathway in cancer, along with aberrant activation, plays a critical role in driving tumorigenesis. LncRNAs modulate the PI3K/AKT signaling pathway through diverse mechanisms, primarily by acting as competing endogenous RNA to regulate miRNA expression and associated genes. This interaction significantly influences fundamental biological behaviors such as cell proliferation, metastasis, and drug resistance. Abnormal expression of numerous lncRNAs in gastrointestinal tumors often correlates with clinical outcomes and pathological features in patients with cancer. Additionally, these lncRNAs influence the sensitivity of tumor cells to chemotherapy in multiple types of gastrointestinal tumors through the abnormal activation of the PI3K/AKT pathway. These findings provide valuable insights into the mechanisms underlying gastrointestinal tumors and potential therapeutic targets. However, gastrointestinal tumors remain a significant global health concern, with increasing incidence and mortality rates of gastrointestinal tumors over recent decades. This review provides a comprehensive summary of the latest research on the interactions of lncRNA and the PI3K/AKT pathway in gastrointestinal tumor development. Additionally, it focuses on the functions of lncRNAs and the PI3K/AKT pathway in carcinogenesis, exploring expression profiles, clinicopathological characteristics, interaction mechanisms with the PI3K/AKT pathway, and potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
34
|
Zhao Z, Chu Y, Feng A, Zhang S, Wu H, Li Z, Sun M, Zhang L, Chen T, Xu M. STK3 kinase activation inhibits tumor proliferation through FOXO1-TP53INP1/P21 pathway in esophageal squamous cell carcinoma. Cell Oncol (Dordr) 2024; 47:1295-1314. [PMID: 38436783 PMCID: PMC11322239 DOI: 10.1007/s13402-024-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is an aggressive disease with a poor prognosis, caused by the inactivation of critical cell growth regulators that lead to uncontrolled proliferation and increased malignancy. Although Serine/Threonine Kinase 3 (STK3), also known as Mammalian STE20-like protein kinase 2 (MST2), is a highly conserved kinase of the Hippo pathway, plays a critical role in immunomodulation, organ development, cellular differentiation, and cancer suppression, its phenotype and function in ESCC require further investigation. In this study, we report for the first time on the role of STK3 kinase and its activation condition in ESCC, as well as the mechanism and mediators of kinase activation. METHODS In this study, we investigated the expression and clinical significance of STK3 in ESCC. We first used bioinformatics databases and immunohistochemistry to analyze STK3 expression in the ESCC patient cohort and conducted survival analysis. In vivo, we conducted a tumorigenicity assay using nude mouse models to demonstrate the phenotypes of STK3 kinase. In vitro, we conducted Western blot analysis, qPCR analysis, CO-IP, and immunofluorescence (IF) staining analysis to detect molecule expression, interaction, and distribution. We measured proliferation, migration, and apoptosis abilities in ESCC cells in the experimental groups using CCK-8 and transwell assays, flow cytometry, and EdU staining. We used RNA-seq to identify genes that were differentially expressed in ESCC cells with silenced STK3 or FOXO1. We demonstrated the regulatory relationship of the TP53INP1/P21 gene medicated by the STK3-FOXO1 axis using Western blotting and ChIP in vitro. RESULTS We demonstrate high STK3 expression in ESCC tissue and cell lines compared to esophageal epithelium. Cellular ROS induces STK3 autophosphorylation in ESCC cells, resulting in upregulated p-STK3/4. STK3 activation inhibits ESCC cell proliferation and migration by triggering apoptosis and suppressing the cell cycle. STK3 kinase activation phosphorylates FOXO1Ser212, promoting nuclear translocation, enhancing transcriptional activity, and upregulating TP53INP1 and P21. We also investigated TP53INP1 and P21's phenotypic effects in ESCC, finding that their knockdown significantly increases tumor proliferation, highlighting their crucial role in ESCC tumorigenesis. CONCLUSION STK3 kinase has a high expression level in ESCC and can be activated by cellular ROS, inhibiting cell proliferation and migration. Additionally, STK3 activation-mediated FOXO1 regulates ESCC cell apoptosis and cell cycle arrest by targeting TP53INP1/P21. Our research underscores the anti-tumor function of STK3 in ESCC and elucidates the mechanism underlying its anti-tumor effect on ESCC.
Collapse
Affiliation(s)
- Ziying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Anqi Feng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shihan Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hao Wu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhaoxing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingchuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
35
|
Chen Y, Wang L, Wang Y, Fang Y, Shen W, Si Y, Zheng X, Zeng S. Integrative Analysis of Histone Acetylation Regulated CYP4F12 in Esophageal Cancer Development. Drug Metab Dispos 2024; 52:813-823. [PMID: 38811154 DOI: 10.1124/dmd.124.001674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Current therapeutic strategies for esophageal cancer (EC) patients have yielded limited improvements in survival rates. Recent research has highlighted the influence of drug metabolism enzymes on both drug response and EC development. Our study aims to identify specific drug metabolism enzymes regulated by histone acetylation and to elucidate its molecular and clinical features. CYP4F12 exhibited a notable upregulation subsequent to trichostatin A treatment as evidenced by RNA sequencing analysis conducted on the KYSE-150 cell line. The change in gene expression was associated with increased acetylation level of histone 3 K18 and K27 in the promoter. The regulation was dependent on p300. In silicon analysis of both The Cancer Genome Atlas esophageal carcinoma and GSE53624 dataset suggested a critical role of CYP4F12 in EC development, because CYP4F12 was downregulated in tumor tissues and predicted better disease-free survival. Gene ontology analysis has uncovered a robust correlation between CYP4F12 and processes related to cell migration, as well as its involvement in cytosine-mediated immune activities. Further investigation into the relationship between immune cells and CYP4F12 expression has indicated an increased level of B cell infiltration in samples with high CYP4F12 expression. CYP4F12 was also negatively correlated with the expression of inhibitory checkpoints. An accurate predictive nomogram model was established combining with clinical factors and CYP4F12 expression. In conclusion, CYP4F12 was crucial in EC development, and targeting CYP4F12 may improve the therapeutic efficacy of current treatment in EC patients. SIGNIFICANCE STATEMENT: CYP4F12 expression was downregulated in esophageal cancer (EC) patients and could be induced by trichostatin A. During EC development, CYP4F12 was linked to reduced cell migration and increased infiltration of B cells. CYP4F12 also is a biomarker as prognostic predictors and therapeutic guide in EC patients.
Collapse
Affiliation(s)
- Yanhong Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Li Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Yanyan Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Wenyang Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Yingxue Si
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| |
Collapse
|
36
|
Guo F, Kong W, Li D, Zhao G, Anwar M, Xia F, Zhang Y, Ma C, Ma X. M2-type tumor-associated macrophages upregulated PD-L1 expression in cervical cancer via the PI3K/AKT pathway. Eur J Med Res 2024; 29:357. [PMID: 38970071 PMCID: PMC11225336 DOI: 10.1186/s40001-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND PURPOSE PD-1/PD-L1 inhibitors have become a promising therapy. However, the response rate is lower than 30% in patients with cervical cancer (CC), which is related to immunosuppressive components in tumor microenvironment (TME). Tumor-associated macrophages (TAMs), as one of the most important immune cells, are involved in the formation of tumor suppressive microenvironment. Therefore, it will provide a theoretical basis for curative effect improvement about the regulatory mechanism of TAMs on PD-L1 expression. METHODS The clinical data and pathological tissues of CC patients were collected, and the expressions of PD-L1, CD68 and CD163 were detected by immunohistochemistry. Bioinformatics was used to analyze the macrophage subtypes involved in PD-L1 regulation. A co-culture model was established to observe the effects of TAMs on the morphology, migration and invasion function of CC cells, and the regulatory mechanism of TAMs on PD-L1. RESULTS PD-L1 expression on tumor cells could predict the poor prognosis of patients. And there was a strong correlation between PD-L1 expression with CD163+TAMs infiltration. Similarly, PD-L1 expression was associated with M1/M2-type TAMs infiltration in bioinformatics analysis. The results of cell co-culture showed that M1/M2-type TAMs could upregulate PD-L1 expression, especially M2-type TAMs may elevate the PD-L1 expression via PI3K/AKT pathway. Meanwhile, M1/M2-type TAMs can affect the morphological changes, and enhance migration and invasion abilities of CC cells. CONCLUSIONS PD-L1 expression in tumor cells can be used as a prognostic factor and is closely related to CD163+TAMs infiltration. In addition, M2-type TAMs can upregulate PD-L1 expression in CC cells through PI3K/AKT pathway, enhance the migration and invasion capabilities, and affect the tumor progression.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
- Postdoctoral Research Workstation of Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weina Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, The People's Hospital of the Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Feifei Xia
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Yuanming Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, 137 Li Yu Shan South Road, Urumqi, 830054, Xinjiang, China.
| | - Xiumin Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
37
|
Fan S, Chen J, Tian H, Yang X, Zhou L, Zhao Q, Qin Y, Zhang J, Tang C. Selenium maintains intestinal epithelial cells to activate M2 macrophages against deoxynivalenol injury. Free Radic Biol Med 2024; 219:215-230. [PMID: 38636715 DOI: 10.1016/j.freeradbiomed.2024.04.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.
Collapse
Affiliation(s)
- Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaying Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinting Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
38
|
Zhou Y, Chu L, Li S, Chu X, Ni J, Jiang S, Pang Y, Zheng D, Lu Y, Lan F, Cai X, Yang X, Zhu Z. Prognostic value of genomic mutation signature associated with immune microenvironment in southern Chinese patients with esophageal squamous cell carcinoma. Cancer Immunol Immunother 2024; 73:141. [PMID: 38832974 PMCID: PMC11150228 DOI: 10.1007/s00262-024-03725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
The genomic landscape of esophageal squamous cell cancer (ESCC), as well as its impact on the regulation of immune microenvironment, is not well understood. Thus, tumor samples from 92 patients were collected from two centers and subjected to targeted-gene sequencing. We identified frequently mutated genes, including TP53, KMT2C, KMT2D, LRP1B, and FAT1. The most frequent mutation sites were ALOX12B (c.1565C > T), SLX4 (c.2786C > T), LRIG1 (c.746A > G), and SPEN (c.6915_6917del) (6.5%). Pathway analysis revealed dysregulation of cell cycle regulation, epigenetic regulation, PI3K/AKT signaling, and NOTCH signaling. A 17-mutated gene-related risk model was constructed using random survival forest analysis and showed significant prognostic value in both our cohort and the validation cohort. Based on the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression (ESTIMATE) algorithm, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm, and the MCPcounter algorithm, we found that the risk score calculated by the risk model was significantly correlated with stimulatory immune checkpoints (TNFSF4, ITGB2, CXCL10, CXCL9, and BTN3A1; p < 0.05). Additionally, it was significantly associated with markers that are important in predicting response to immunotherapy (CD274, IFNG, and TAMM2; p < 0.05). Furthermore, the results of immunofluorescence double staining showed that patients with high risk scores had a significantly higher level of M2 macrophage than those with low risk scores (p < 0.05). In conclusion, our study provides insights into the genomic landscape of ESCC and highlights the prognostic value of a genomic mutation signature associated with the immune microenvironment in southern Chinese patients with ESCC.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuyan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yechun Pang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danru Zheng
- Department of VIP Inpatient, Sun Yet-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yujuan Lu
- Department of VIP Inpatient, Sun Yet-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Fangcen Lan
- Department of VIP Inpatient, Sun Yet-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet-Sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China.
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Fan J, Zhu J, Zhu H, Xu H. Potential therapeutic targets in myeloid cell therapy for overcoming chemoresistance and immune suppression in gastrointestinal tumors. Crit Rev Oncol Hematol 2024; 198:104362. [PMID: 38614267 DOI: 10.1016/j.critrevonc.2024.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
In the tumor microenvironment (TME), myeloid cells play a pivotal role. Myeloid-derived immunosuppressive cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), are central components in shaping the immunosuppressive milieu of the tumor. Within the TME, a majority of TAMs assume an M2 phenotype, characterized by their pro-tumoral activity. These cells promote tumor cell growth, angiogenesis, invasion, and migration. In contrast, M1 macrophages, under appropriate activation conditions, exhibit cytotoxic capabilities against cancer cells. However, an excessive M1 response may lead to pro-tumoral inflammation. As a result, myeloid cells have emerged as crucial targets in cancer therapy. This review concentrates on gastrointestinal tumors, detailing methods for targeting macrophages to enhance tumor radiotherapy and immunotherapy sensitivity. We specifically delve into monocytes and tumor-associated macrophages' various functions, establishing an immunosuppressive microenvironment, promoting tumorigenic inflammation, and fostering neovascularization and stromal remodeling. Additionally, we examine combination therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China.
| |
Collapse
|
40
|
Zhao L, Wang G, Qi H, Yu L, Yin H, Sun R, Wang H, Zhu X, Yang A. LINC00330/CCL2 axis-mediated ESCC TAM reprogramming affects tumor progression. Cell Mol Biol Lett 2024; 29:77. [PMID: 38769475 PMCID: PMC11103861 DOI: 10.1186/s11658-024-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.
Collapse
Affiliation(s)
- Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Gengchao Wang
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haonan Qi
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lili Yu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Huilong Yin
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongfei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaofei Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi, China.
| |
Collapse
|
41
|
Zhang W, Ou M, Yang P, Ning M. The role of extracellular vesicle immune checkpoints in cancer. Clin Exp Immunol 2024; 216:230-239. [PMID: 38518192 PMCID: PMC11097917 DOI: 10.1093/cei/uxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024] Open
Abstract
Immune checkpoints (ICPs) play a crucial role in regulating the immune response. In the tumor, malignant cells can hijack the immunosuppressive effects of inhibitory ICPs to promote tumor progression. Extracellular vesicles (EVs) are produced by a variety of cells and contain bioactive molecules on their surface or within their lumen. The expression of ICPs has also been detected in EVs. In vitro and in vivo studies have shown that extracellular vesicle immune checkpoints (EV ICPs) have immunomodulatory effects and are involved in tumor immunity. EV ICPs isolated from the peripheral blood of cancer patients are closely associated with the tumor progression and the prognosis of cancer patients. Blocking inhibitory ICPs has been recognized as an effective strategy in cancer treatment. However, the efficacy of immune checkpoint inhibitors (ICIs) in cancer treatment is hindered by the emergence of therapeutic resistance, which limits their widespread use. Researchers have demonstrated that EV ICPs are correlated with clinical response to ICIs therapy and were involved in therapeutic resistance. Therefore, it is essential to investigate the immunomodulatory effects, underlying mechanisms, and clinical significance of EV ICPs in cancer. This review aims to comprehensively explore these aspects. We have provided a comprehensive description of the cellular origins, immunomodulatory effects, and clinical significance of EV ICPs in cancer, based on relevant studies.
Collapse
Affiliation(s)
- Weiming Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu, China
| | - Ping Yang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Wu X, Mi T, Jin L, Ren C, Wang J, Zhang Z, Liu J, Wang Z, Guo P, He D. Dual roles of HK3 in regulating the network between tumor cells and tumor-associated macrophages in neuroblastoma. Cancer Immunol Immunother 2024; 73:122. [PMID: 38714539 PMCID: PMC11076449 DOI: 10.1007/s00262-024-03702-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/13/2024] [Indexed: 05/10/2024]
Abstract
Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.
Collapse
Affiliation(s)
- Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoyin Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
43
|
Fang J, Shi C, Huang Q, Huang L, Wang X, Yan B. Development of the ARDS-derived gene panel for lung adenocarcinoma prognosis stratification and experiment validation of CCL20 expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:3211-3224. [PMID: 38356310 DOI: 10.1002/tox.24161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/16/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by lung inflammation and high mortality rates. Lung cancer, specifically lung adenocarcinoma (LUAD), is a major cause of cancer-related deaths worldwide. Patients with LUAD, particularly those undergoing chemotherapy, are more likely to develop ARDS. ARDS inflicts major malfunctioning in the immune system. We suspected a certain shared pathogenic mechanism between these diseases. This study analyzed 503 LUAD patients from the TCGA-LUAD cohort as the training set, 85 LUAD cases from the GSE30219 cohort as the validation set, and 24 RNA-seq samples from ARDS mice model and control groups in the GSE2411 cohort. The differentially expressed genes (DEGs) of ARDS were analyzed using the limma package and screened by Cox and Lasso analysis. ssGSEA and xCell algorithms were utilized for immune landscaping. RT-qPCR analysis was used to determine the mRNA levels of key genes in both the LPS-induced ARDS model and human LUAD cell lines. We identified DEGs between ARDS and control groups, which were highly associated with cytokine production and leukocyte migration. A prognosis model for LUAD patients was developed based on the expressions of the key genes in the ARDS-derived DEGs, including FMO3, IL1R2, CCL20, CFTR, and GADD45G. A satisfactory efficacy was observed in both the training and validation cohorts. The model demonstrated increased effectiveness in predicting the intratumor immune profile and mutation status of LUAD. Moreover, we utilized LPS to induce the ARDS model, which resulted in elevated expressions of IL1R2 and CCL20. Additionally, CCL20 was upregulated in cancerous LUAD cell lines. We developed an ARDS-based model for stratifying LUAD prognosis. CCL20 was found to be elevated in both the ARDS model and LUAD, suggesting a shared underlying mechanism of these two diseases.
Collapse
Affiliation(s)
- Jingjing Fang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chaolu Shi
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qin Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lei Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinnian Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Biqing Yan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
44
|
Hu J, Li P, Dan Y, Chen Z, Lu Y, Chen X, Yan S. COL8A1 Regulates Esophageal Squamous Carcinoma Proliferation and Invasion Through PI3K/AKT Pathway. Ann Surg Oncol 2024; 31:3502-3512. [PMID: 38429534 DOI: 10.1245/s10434-023-14370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/15/2023] [Indexed: 03/03/2024]
Abstract
PURPOSE Esophageal squamous carcinoma (ESCC) is a gastrointestinal malignancy with a high mortality, but the tumorigenesis is still unclear, restricting the target therapy development of ESCC. We explored the role of COL8A1 in ESCC development. METHODS Tissue microarrays were used to investigate the expression level of COL8A1 in ESCC tissues. The association between COL8A1 and the overall survival of ESCC patients was assessed. The effect of differential COL8A1 expression on tumor growth was investigated by the xenograft model. The regulation of COL8A1 on tumor growth, migration, and invasion was studied by using ESCC cell lines. The signal transduction pathways involved in COL8A1 were bioinformatically profiled and validated. RESULTS The COL8A1 was significantly expressed in cancerous tissues and was associated with poor prognosis in patients with ESCC. In vivo, the tumor growth obviously declined after inhibition of the COL8A1 expression. The abilities of cell proliferation and invasion were both decreased when the expression of COL8A1 was knockdown in ESCC cell line. Furthermore, we found the inactivation of the PI3K/AKT pathway that was mediated by knockdown of COL8A1 in ESCC cells, which was reversed with COL8A1 overexpression, whereas the cell proliferation and invasion ability were restored. CONCLUSIONS This is the first report that COL8A1 promote ESCC progression, which hopefully will provide a theoretical basis for clinical targeting of ESCC.
Collapse
Affiliation(s)
- Jing Hu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Pengbo Li
- The Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yanggang Dan
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Zhe Chen
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yeting Lu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xue Chen
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Jia J, Yu L. METTL3-mediated m6A modification of EPPK1 to promote the development of esophageal cancer through regulating the PI3K/AKT pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2830-2841. [PMID: 38293837 DOI: 10.1002/tox.24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Methyltransferase like 3 (METTL3) has been proved to be involved in the progression of various cancers. In this study, we explored the role of METTL3 and its underlying mechanism in esophageal cancer progression. The mRNA and protein levels of METTL3 and epiplakin1 (EPPK1) were determined using qRT-PCR and western blot. The proliferative ability was evaluated through 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT), colony formation, and EdU assays. Transwell invasion assay and wound-healing assay were employed for detecting cell invasion and migration, respectively. Cell stemness was evaluated by sphere-formation assay. Xenograft tumor experiments and immunohistochemistry (IHC) were performed to explore the effects of METTL3 knockdown on tumor growth in vivo. The N6-methyladenosine (m6A) modification of EPPK1 was analyzed using MeRIP. RNA-protein immunoprecipitation (RIP) and dual-luciferase reporter assays were used to verify the relationship between EPPK1 and METTL3. METTL3 was upregulated in esophageal cancer tissues and cells, which was related to the poor prognosis of esophageal cancer patients. Knockdown of METTL3 overtly decreased the proliferative, invasive, migrated abilities, and cell stemness of esophageal cancer cells in vitro. Moreover, depletion of METTL3 also observably suppressed the growth of tumor in vivo. EPPK1 was a direct target of METTL3, and METTL3 could mediate the m6A modification of EPPK1. EPPK1 was downregulated in esophageal cancer tissues and cells, and EPPK1 depletion markedly repressed cell proliferation, invasion, migration, and stemness of esophageal cancer cells. The inhibition effects of METTL3 deficiency on these malignant behaviors were harbored by EPPK1 upregulation in esophageal cancer cells. In addition, METTL3 deficiency reduced EPPK1 expression to inactivate the PI3K/AKT pathway. Our results revealed that METTL3 deficiency regulated the m6A modification of EPPK1 to inhibit the PI3K/AKT pathway, thereby restraining the progression of esophageal cancer.
Collapse
Affiliation(s)
- Jun Jia
- Department of Thoracic Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Longhai Yu
- Department of Thoracic Surgery, Nanyang First People's Hospital, Nanyang, China
| |
Collapse
|
46
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
47
|
Li H, Ruan Y, Liu C, Fan X, Yao Y, Dai Y, Song Y, Jiang D, Sun N, Jiao G, Chen Z, Fan S, Meng F, Yang H, Zhang Y, Li Z. VDR promotes pancreatic cancer progression in vivo by activating CCL20-mediated M2 polarization of tumor associated macrophage. Cell Commun Signal 2024; 22:224. [PMID: 38600588 PMCID: PMC11005177 DOI: 10.1186/s12964-024-01578-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.
Collapse
Affiliation(s)
- Hengzhen Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
| | - Xiaona Fan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
- Heilongjiang Province Key Laboratory of molecular Oncology, Harbin, China
| | - Yisheng Dai
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Jiang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangtao Jiao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shiheng Fan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Fanfei Meng
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China.
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
48
|
Yi L, Gai Y, Chen Z, Tian K, Liu P, Liang H, Xu X, Peng Q, Luo X. Macrophage colony-stimulating factor and its role in the tumor microenvironment: novel therapeutic avenues and mechanistic insights. Front Oncol 2024; 14:1358750. [PMID: 38646440 PMCID: PMC11027505 DOI: 10.3389/fonc.2024.1358750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
The tumor microenvironment is a complex ecosystem where various cellular and molecular interactions shape the course of cancer progression. Macrophage colony-stimulating factor (M-CSF) plays a pivotal role in this context. This study delves into the biological properties and functions of M-CSF in regulating tumor-associated macrophages (TAMs) and its role in modulating host immune responses. Through the specific binding to its receptor colony-stimulating factor 1 receptor (CSF-1R), M-CSF orchestrates a cascade of downstream signaling pathways to modulate macrophage activation, polarization, and proliferation. Furthermore, M-CSF extends its influence to other immune cell populations, including dendritic cells. Notably, the heightened expression of M-CSF within the tumor microenvironment is often associated with dismal patient prognoses. Therefore, a comprehensive investigation into the roles of M-CSF in tumor growth advances our comprehension of tumor development mechanisms and unveils promising novel strategies and approaches for cancer treatment.
Collapse
Affiliation(s)
- Li Yi
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Yihan Gai
- School of Stomatology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Zhuo Chen
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Kecan Tian
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Pengfei Liu
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Hongrui Liang
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xinyu Xu
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Qiuyi Peng
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xiaoqing Luo
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| |
Collapse
|
49
|
Chen J, Mao M, Ma Z, Liu J, Jiang M, Chen G, Xu Y. Homeobox B2 promotes malignant behavior and contributes to the radioresistance of nasopharyngeal carcinoma by regulating forkhead box protein O1. Int J Med Sci 2024; 21:837-847. [PMID: 38617001 PMCID: PMC11008478 DOI: 10.7150/ijms.93128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is an epithelial tumor of the head and neck with heterogeneous racial and geographical distributions. Homeobox B2 (HOXB2) is a tumor promoter in many cancers. However, the biological role of HOXB2 in NPC has not been elucidated. Methods: Bioinformatics analysis was performed to identify the differentially expressed genes (DEGs) between samples of patients with radiosensitive and radioresistant NPC. qRT-PCR, western blotting and immunohistochemistry were used to detect the expression levels of the corresponding mRNA and proteins. Cell viability was detected by CCK-8 assay and colony-forming capability was evaluated using colony formation assays. Further, migration and invasion abilities were examined using wound-healing and transwell chamber assays, respectively. Cellular apoptosis after irradiation was assessed using flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Results: HOXB2 was identified as a potential regulator of radioresistance in NPC. Our in vitro results indicate that HOXB2 overexpression (HOXB2-OE) promoted malignant behaviors including invasion, migration, proliferation, and inhibited the irradiation-induced apoptosis of NPC cells. Consistent with these results, HOXB2 knockdown (HOXB2-sh) exhibited the opposite trends in these biological activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were enriched in the FOXO signaling pathway. Mechanistically, western blotting showed that HOXB2-OE inhibited forkhead box protein O1 (FOXO1) expression in NPC cells. Thereafter, we transferred the FOXO1-OE plasmid to HOXB2-OE NPC cells and found that overexpression of FOXO1 reversed cell proliferation, migration, invasion, and radioresistance profiles promoted by HOXB2 overexpression. Conclusion: Our findings showed that HOXB2 acts as a tumor promoter in NPC, activating malignant behaviors and radioresistance of tumors via FOXO1 regulation. Moreover, the inactivation of HOXB2 or activation of FOXO1 are potential strategies to inhibit tumor progression and overcome radioresistance in NPC.
Collapse
Affiliation(s)
- Jinhai Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Mao
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoen Ma
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minqiong Jiang
- Department of Nursing, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guangui Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yali Xu
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Huang LK, Zeng XS, Jiang ZW, Peng H, Sun F. Echinacoside alleviates glucocorticoid induce osteonecrosis of femoral head in rats through PI3K/AKT/FOXO1 pathway. Chem Biol Interact 2024; 391:110893. [PMID: 38336255 DOI: 10.1016/j.cbi.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH), caused by glucocorticoid (GC) administration, is known to exhibit a high incidence worldwide. Although osteoblast apoptosis has been reported as an important cytological basis of SONFH, the precise mechanism remains elusive. Echinacoside (Ech), a natural phenylethanoid glycoside, exerts multiple beneficial effects, such as facilitation of cell proliferation and anti-inflammatory and anticancer activities. Herein, we aimed to explore the regulatory mechanism underlying glucocorticoid-induced osteoblast apoptosis and determine the protective efficacy of Ech against SONFH. We comprehensively surveyed multiple public databases to identify SONFH-related genes. Using bioinformatics analysis, we identified that the PI3K/AKT/FOXO1 signaling pathway was most strongly associated with SONFH. We examined the protective effect of Ech against SONFH using in vivo and in vitro experiments. Specifically, dexamethasone (Dex) decreased p-PI3K and p-AKT levels, which were reversed following Ech addition. Validation of the PI3K inhibitor (LY294002) and molecular docking of Ech and PI3K/AKT further indicated that Ech could directly enhance PI3K/AKT activity to alleviate Dex-induced inhibition. Interestingly, Dex upregulated the expression of FOXO1, Bax, cleaved-caspase-9, and cleaved-caspase-3 and enhanced MC3T3-E1 apoptosis; application of Ech and siRNA-FOXO1 reversed these effects. In vitro, Ech decreased the number of empty osteocytic lacunae, reduced TUNEL and FOXO1 positive cells, and improved bone microarchitecture. Our results provide robust evidence that PI3K/AKT/FOXO1 plays a crucial role in the development of SONFH. Moreover, Ech may be a promising candidate drug for the treatment of SONFH.
Collapse
Affiliation(s)
- Liang Kun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Shuang Zeng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ze Wen Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fei Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|