1
|
Elgretli W, Shengir M, Sasson S, Ramanakumar AV, Cinque F, Ballestreros LER, Deschenes M, Wong P, Chen T, Kronfli N, Saeed S, Keeshan A, Tandon S, Cooper C, Sebastiani G. Association of MASLD Phenotypes With Liver Fibrosis in Hepatitis C: The Role of Cardiometabolic Risk Factors. J Viral Hepat 2025; 32:e70004. [PMID: 39868661 PMCID: PMC11771651 DOI: 10.1111/jvh.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
Steatotic liver disease is prevalent among people with hepatitis C virus (HCV). The new definition of metabolic dysfunction-associated steatotic liver disease (MASLD) emphasises the metabolic drivers of steatosis and recognises its frequent coexistence with other chronic liver diseases, including HCV. We aimed to evaluate the association of coexisting MASLD and HCV with liver fibrosis. Individuals with HCV who underwent transient elastography (TE) with associated controlled attenuation parameter (CAP) were included from two clinical centres. MASLD and significant liver fibrosis were defined as the presence of steatosis (CAP ≥ 275 dB/m) with at least one cardiometabolic risk factor, and liver stiffness measurement (LSM) ≥ 7.1 kPa measured by TE, respectively. Associated cofactors of significant liver fibrosis were determined using stepwise regression and cross-validation by LASSO models to select confounders. Among 590 participants, 31% were diagnosed with MASLD. The prevalence of significant liver fibrosis was the highest among people with MASLD (58%) followed by HCV-related steatosis (45%) and the non-steatosis group (39%). After adjusting for potential confounders, MASLD was associated with significant liver fibrosis (adjusted odds ratio [aOR] 2.29, 95% confidence interval [CI] 1.07-4.87). Furthermore, specific MASLD phenotypes including diabetes, hypertension and overweight were associated with significant liver fibrosis, with aORs of 4.76 (95% CI 2.16-10.49), 3.44 (95% CI 1.77-6.68) and 2.54 (95% CI 1.27-5.07), respectively. In conclusion, MASLD is associated with liver fibrosis in people with HCV, specifically the diabetes, overweight and hypertensive phenotypes. Beyond pursuing a virological cure, healthcare providers should prioritise managing metabolic conditions, particularly diabetes, hypertension and obesity.
Collapse
Affiliation(s)
- Wesal Elgretli
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
| | - Mohamed Shengir
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
| | - Solomon Sasson
- Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Felice Cinque
- Department of PathophysiologyTransplantation University of MilanMilanItaly
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Luz Esther Ramos Ballestreros
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Marc Deschenes
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Phil Wong
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Tianyan Chen
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Nadine Kronfli
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
- Centre for Outcomes Research and EvaluationResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Sahar Saeed
- Public Health SciencesQueen's UniversityKingstonOntarioCanada
| | - Alexa Keeshan
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Saniya Tandon
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Curtis Cooper
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Giada Sebastiani
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| |
Collapse
|
2
|
Hsieh YC, Lee KC, Su CW, Lan KH, Huo TI, Wang YJ, Huang HC, Lin HC, Chu CJ, Huang YH, Hou MC. Persistent liver inflammation in chronic hepatitis C patients with advanced fibrosis after direct-acting antivirals induced sustained virological response. J Chin Med Assoc 2021; 84:472-477. [PMID: 33742989 DOI: 10.1097/jcma.0000000000000517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Direct-acting antivirals (DAA) improve sustained virological response (SVR) rates with normalization of liver enzymes in patients with hepatitis C. However, liver inflammation may persist despite virus eradication. We aimed to investigate the rate and risk factors for persistent elevated aminotransferase levels in patients with advanced fibrosis after DAA-induced SVR. METHODS From January 2017 to April 2018, chronic hepatitis C patients with advanced fibrosis and SVR after DAA treatment at the Taipei Veterans General Hospital were prospectively enrolled. Persistent liver inflammation after SVR was defined as an increase in levels of alanine aminotransferase (ALT) (>40 U/L) at SVR12. RESULTS A total of 461 patients were included (57.9% females, mean age 64 years, 69.6% genotype 1b, 46.4% cirrhosis). At SVR12, there was a decline in ALT levels (90.5 ± 80.8 U/L to 25.3 ± 26.5 U/L) from baseline levels. Persistent liver inflammation at SVR12 was detected in 45 patients (9.8%). The presence of cirrhosis, markers of impaired liver functions, history of interferon-based therapy, steatosis, and elevated ALT levels at baseline was associated with persistent liver inflammation after SVR12. Results of multivariate analysis indicated that levels of baseline serum total bilirubin (odds ratio [OR]: 2.605, 95% CI: 1.158-5.858), international normalized ratio (OR: 14.389, 95% CI: 1.754-118.049), ALT (OR: 1.006, 95% CI: 1.003-1.009), and the presence of steatosis (OR: 3.635, 95% CI: 1.716-7.698) were independent predictors of persistent liver inflammation at SVR12. CONCLUSION Persistent liver inflammation is not uncommon in chronic hepatitis C patients with advanced fibrosis after DAA-induced SVR. It is associated with impaired baseline liver function and steatosis. Long-term follow-up is required to assess the implication of liver inflammation on disease progression.
Collapse
Affiliation(s)
- Yun-Cheng Hsieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Ken-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yuan-Jen Wang
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Health Management, Healthcare and Service Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of General medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Chi-Jen Chu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Mukherjee MB, Mullick R, Reddy BU, Das S, Raichur AM. Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS APPLIED BIO MATERIALS 2020; 3:7598-7610. [PMID: 35019500 DOI: 10.1021/acsabm.0c00814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA and RNA based antiviral strategies using nonviral vectors have shown better potential over the viral pathway due to the fewer chances of gene recombination and immunogenicity. In this work a mesoporous silica nanoparticle (MSN) based carrier system has been used for targeted delivery of shDNA molecule against the conserved 5'-untranslated region (UTR) in the RNA of a hepatitis C virus to inhibit its replication. The MSNs coated with amine and galactose could specifically target liver cells. Significant reduction (about 94%) of viral RNA level was achieved in HCV-JFH1 infectious cell culture compared to the control RNA levels directed the successful delivery and action of the shDNA. This study showed that Gal-AMSN can be used as a synthetic delivery vector to deliver the shDNA effectively for the treatment of HCV infection.
Collapse
Affiliation(s)
- Mousumi Beto Mukherjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ranajoy Mullick
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - B Uma Reddy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
5
|
Zhang H, Zhang C, Tang H, Gao S, Sun F, Yang Y, Zhou W, Hu Y, Ke C, Wu Y, Ding Z, Guo L, Pei R, Chen X, Sy M, Zhang B, Li C. CD2-Associated Protein Contributes to Hepatitis C, Virus Propagation and Steatosis by Disrupting Insulin Signaling. Hepatology 2018; 68:1710-1725. [PMID: 29729186 PMCID: PMC6220802 DOI: 10.1002/hep.30073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C virus (HCV) infection can result in steatosis, a condition displaying aberrant accumulation of neutral lipid vesicles, the component of lipid droplets (LDs), which are essential for HCV assembly. However, the interplay between HCV infection and steatosis remains unclear. Here, we show that HCV-infected cells have higher levels of CD2-associated protein (CD2AP), which plays two distinct, yet tightly linked, roles in HCV pathogenesis: Elevated CD2AP binds to nonstructural protein 5A (NS5A) and participates in the transport of NS5A to LDs to facilitate viral assembly; Up-regulated CD2AP also interacts with casitas B-lineage lymphoma (b) (Cbl/Cbl-b) E3 ligases to degrade insulin receptor substrate 1 (IRS1), which, in turn, disrupts insulin signaling and increases LD accumulation through the IRS1/protein kinase B (Akt)/adenosine monophosphate-activated protein kinase (AMPK)/hormone-sensitive lipase (HSL) signaling axis to accommodate viral assembly. In the HCV-infected mouse model, CD2AP expression is up-regulated during the chronic infection stage and this up-regulation correlates well with liver steatosis. Importantly, CD2AP up-regulation was also detected in HCV-infected human liver biopsies showing steatosis compared to non-HCV-infected controls. Conclusion: CD2AP is indicated as a protein up-regulated by HCV infection, which, in turn, stimulates HCV propagation and steatosis by disrupting insulin signaling; targeting CD2AP may offer an opportunity for alleviating HCV infection and its associated liver pathology. (Hepatology 2018;XX:XXX-XXX.).
Collapse
Affiliation(s)
- Huixia Zhang
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chao Zhang
- Key laboratory of Infection and Immunity, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hong Tang
- Institute Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Shanshan Gao
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Sun
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
| | - Yu Hu
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Changshu Ke
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yu Wu
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zeyang Ding
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Lin Guo
- School of Life SciencesWuhan UniversityState Key Laboratory of VirologyWuhanChina
| | - Rongjuan Pei
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
| | - Xinwen Chen
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
| | - Man‐Sun Sy
- Department of Pathology, School of MedicineCase Western Reserve UniversityClevelandOH
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Chaoyang Li
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- School of Chemistry, Chemical Engineering, and Life SciencesWuhan University of TechnologyWuhanChina
| |
Collapse
|
6
|
Rattansingh A, Amooshahi H, Menezes RJ, Wong F, Fischer S, Kirsch R, Atri M. Utility of shear-wave elastography to differentiate low from advanced degrees of liver fibrosis in patients with hepatitis C virus infection of native and transplant livers. JOURNAL OF CLINICAL ULTRASOUND : JCU 2018; 46:311-318. [PMID: 29508406 DOI: 10.1002/jcu.22583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/01/2017] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To determine the accuracy of shear-wave elastography (SWE) to differentiate low from advanced degrees of liver fibrosis in hepatitis C patients. MATERIAL & METHOD Consented native/transplant hepatitis C patients underwent SWE using a C1-6 MHz transducer before ultrasound (US)-guided liver biopsy. Five interpretable SWE samples were obtained from the right lobe of the liver immediately before US-guided random biopsy of the right lobe. Average kilopascal (kPa) values were compared to the meta-analysis of histological data in viral hepatitis (METAVIR) fibrosis grading. SWE values were correlated with the degree of inflammation and fatty infiltration. RESULTS Study population consisted of 115 patients (63 with transplant, and 52 with native liver) including 29 women and 86 men, with a mean ± SD age of 56 ± 8.7 years. Mean ± SD SWE values were 7.9 ± 3 kPa in 83 patients with METAVIR scores of 0-2 and 13.2 ± 5.9 kPa in 32 patients with METAVIR scores of 3 or 4 (P < .001). Area under curve (AUC) of a Receiver Operating Characteristics curve for advanced degrees of fibrosis was 0.81 (95% CI: 0.71, 0.90) (P < .001). AUCs of transplant versus native livers (0.78 [CI:0.62, 0.94] versus 0.85 [CI: 0.73, 0.96]), degree of inflammation (0.81 [CI: 0.65, 0.97] versus 0.72 [0.56, 0.88]), or degree of fat deposition (0.81 [CI:0.70, 0.92] versus 0.80 [CI:0.61, 1]) were not statistically different (P > .05). for kPa threshold of SWE value of 10.67 kPa to differentiate advanced from low degree of fibrosis had a sensitivity of 59% (CI: 41%-76%) and specificity of 90% (CI: 82%-96%). CONCLUSION Liver stiffness evaluated by SWE can differentiate low from advanced liver fibrosis.
Collapse
Affiliation(s)
- Anand Rattansingh
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Hosein Amooshahi
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Ravi J Menezes
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Florence Wong
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Fischer
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Richard Kirsch
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Mostafa Atri
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S, Zhou J, Shao J, Chen A, Zhang F, Zheng S. Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother 2017; 97:339-348. [PMID: 29091883 DOI: 10.1016/j.biopha.2017.07.168] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. The recent finding that LDs can be selectively degraded by the lysosomal pathway of autophagy through a process termed lipophagy has opened up a new understanding of how lipid metabolism regulates cellular physiology and pathophysiology. Many new functions for autophagic lipid metabolism have now been defined in various diseases including liver disease. Lipophagy was originally described in hepatocytes, where it is critical for maintaining cellular energy homeostasis in obesity and metabolic syndrome. In vitro and in vivo studies have demonstrated the selective uptake of LDs by autophagosomes, and inhibition of autophagy has been shown to reduce the β-oxidation of free fatty acids due to the increased accumulation of lipids and LDs. The identification of lipophagy as a new process dedicated to cellular lipid removal has mapped autophagy as an emerging player in cellular lipid metabolism. Pharmacological or genetic modulation of lipophagy might point to possible therapeutic strategies for combating a broad range of liver diseases. This review summarizes recent work focusing on lipophagy and liver disease as well as highlighting challenges and future directions of research. On the other hand, it also offers a glimpse into different strategies that have been used in experimental models to counteract excessive pathological lipophagy in the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Qian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyi Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
8
|
Kanda T, Moriyama M. Direct-acting antiviral agents against hepatitis C virus and lipid metabolism. World J Gastroenterol 2017; 23:5645-5649. [PMID: 28883690 PMCID: PMC5569279 DOI: 10.3748/wjg.v23.i31.5645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection induces steatosis and is accompanied by multiple metabolic alterations including hyperuricemia, reversible hypocholesterolemia and insulin resistance. Total cholesterol, low-density lipoprotein-cholesterol and triglyceride levels are increased by peginterferon and ribavirin combination therapy when a sustained virologic response (SVR) is achieved in patients with HCV. Steatosis is significantly more common in patients with HCV genotype 3 but interferon-free regimens are not always effective for treating HCV genotype 3 infections. HCV infection increases fatty acid synthase levels, resulting in the accumulation of fatty acids in hepatocytes. Of note, low-density lipoprotein receptor, scavenger receptor class B type I and Niemann-Pick C1-like 1 proteins are candidate receptors that may be involved in HCV. They are also required for the uptake of cholesterol from the external environment of hepatocytes. Among HCV-infected patients with or without human immunodeficiency virus infection, changes in serum lipid profiles are observed during interferon-free treatment and after the achievement of an SVR. It is evident that HCV affects cholesterol metabolism during interferon-free regimens. Although higher SVR rates were achieved with interferon-free treatment of HCV, special attention must also be paid to unexpected adverse events based on host metabolic changes including hyperlipidemia.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
9
|
Idilman IS, Ozdeniz I, Karcaaltincaba M. Hepatic Steatosis: Etiology, Patterns, and Quantification. Semin Ultrasound CT MR 2016; 37:501-510. [DOI: 10.1053/j.sult.2016.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Liang J, Cai W, Han T, Jing L, Ma Z, Gao Y. The expression of thymosin β4 in chronic hepatitis B combined nonalcoholic fatty liver disease. Medicine (Baltimore) 2016; 95:e5763. [PMID: 28033294 PMCID: PMC5207590 DOI: 10.1097/md.0000000000005763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/12/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to detect the expression level of thymosin β4 (Tβ4) in serum and tissues of patients with chronic hepatitis B (CHB) combined nonalcoholic fatty liver disease (NAFLD). The effects of Tβ4 in hepatic steatosis, chronic inflammation, and fibrosis development in CHB combined NAFLD patients were also discussed. The study included 46 patients in the case group with CHB and NAFLD and 42 patients in the control group with CHB. ELISA was applied to detect serum Tβ4 and TNF-α level. Furthermore, the correlation analysis of Tβ4 levels with biochemical index, pathological index, and TNF-α level was performed. The Tβ4 immunohistochemical levels of different inflammation fibrosis levels were compared, and the correlation analysis with TNF expression was performed. The Tβ4 levels in patients with CHB combined NAFLD showed no statistical difference when compared to the control group. In patients with CHB combined NAFLD group, the Tβ4 level had no correlation with ALT, AST, TG, FGP, hepatitis B virus (HBV)-DNA levels, and fat grading, but had negative correlation with inflammation score and fibrosis score (P <0.01). The immunohistochemical results of hepatic tissues showed that the expression intensity of severe inflammation fibrosis group had statistical significance compared with that of slight group, and the Tβ4 expression both in serum and in liver tissue negatively correlated with TNF-α expression. Tβ4 could be involved in the regulation of chronic inflammation and fibrosis and plays a defense role in the disease progression of CHB combined NAFLD patients.
Collapse
Affiliation(s)
- Jing Liang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital
- Tianjin Key Laboratory of Artificial Cell
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Wenjuan Cai
- Department of Pathology, Tianjin First Central Hospital
| | - Tao Han
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital
| | - Li Jing
- Molecular Biology Laboratory, Tianjin Third Central Hospital
| | - Zhe Ma
- Department of Pathology, Tianjin Third Central Hospital
| | - Yingtang Gao
- Molecular Biology Laboratory, Tianjin Third Central Hospital
| |
Collapse
|
11
|
Duan L, Yan Y, Liu J, Wang B, Li P, Hu Q, Chen W. Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C. Sci Rep 2016; 6:24867. [PMID: 27113197 PMCID: PMC4845054 DOI: 10.1038/srep24867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/06/2016] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) represents a promising strategy for the treatment of HCV infection. However, the development of an effective system for in vivo delivery of small interfering RNA (siRNA) to target organ remains a formidable challenge. Here, we develop a unique nanoparticle platform (VE-DC) composed of α-tocopherol (vitamin E) and cholesterol-based cationic liposomes (DOTAP-Chol) for systemic delivery of siRNAs to the liver. A HCV-replicable cell line, Huh7.5.1-HCV, and a transient HCV core expressing cell line, Huh7.5.1-Core, were constructed and used to assess the in vitro anti-HCV activity of VE-DC/siRNAs. A transient in vivo HCV model was also constructed by hydrodynamic injection of pCDNA3.1(+)-3FLAG-Core (pCore-3FLAG) plasmid expressing core protein or pGL3-5′UTR-luciferase (pGL3-5′UTR-luc) plasmid expressing luciferase driven by HCV 5′UTR. Nanoscale VE-DC/siRNA was intravenously injected to assess the liver-targeting property as well as antiviral activity. The nanoscale VE-DC effectively exerted an anti-HCV activity in the in vitro cell models. Post-administration of VE-DC/siRNAs also effectively delivered siRNAs to the liver, suppressing core protein production and firefly luciferase activity, without inducing an innate immunity response or off-target and toxicity effects. The VE-DC platform has high potential as a vehicle for delivery of siRNAs to the liver for gene therapy for targeting hepatitis C.
Collapse
Affiliation(s)
- Liang Duan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yan Yan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jingyi Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bo Wang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pu Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qin Hu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weixian Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
12
|
Haga Y, Kanda T, Sasaki R, Nakamura M, Nakamoto S, Yokosuka O. Nonalcoholic fatty liver disease and hepatic cirrhosis: Comparison with viral hepatitis-associated steatosis. World J Gastroenterol 2015; 21:12989-12995. [PMID: 26675364 PMCID: PMC4674717 DOI: 10.3748/wjg.v21.i46.12989] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/07/2015] [Accepted: 10/17/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) is globally increasing and has become a world-wide health problem. Chronic infection with hepatitis B virus or hepatitis C virus (HCV) is associated with hepatic steatosis. Viral hepatitis-associated hepatic steatosis is often caused by metabolic syndrome including obesity, type 2 diabetes mellitus and/or dyslipidemia. It has been reported that HCV genotype 3 exerts direct metabolic effects that lead to hepatic steatosis. In this review, the differences between NAFLD/NASH and viral hepatitis-associated steatosis are discussed.
Collapse
|