1
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
2
|
Fettucciari K, Fruganti A, Stracci F, Spaterna A, Marconi P, Bassotti G. Clostridioides difficile Toxin B Induced Senescence: A New Pathologic Player for Colorectal Cancer? Int J Mol Sci 2023; 24:ijms24098155. [PMID: 37175861 PMCID: PMC10179142 DOI: 10.3390/ijms24098155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a high percentage of gastrointestinal infections and its pathological activity is due to toxins A and B. C. difficile infection (CDI) is increasing worldwide due to the unstoppable spread of C. difficile in the anthropized environment and the progressive human colonization. The ability of C. difficile toxin B to induce senescent cells and the direct correlation between CDI, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD) could cause an accumulation of senescent cells with important functional consequences. Furthermore, these senescent cells characterized by long survival could push pre-neoplastic cells originating in the colon towards the complete neoplastic transformation in colorectal cancer (CRC) by the senescence-associated secretory phenotype (SASP). Pre-neoplastic cells could appear as a result of various pro-carcinogenic events, among which, are infections with bacteria that produce genotoxins that generate cells with high genetic instability. Therefore, subjects who develop IBS and/or IBD after CDI should be monitored, especially if they then have further CDI relapses, waiting for the availability of senolytic and anti-SASP therapies to resolve the pro-carcinogenic risk due to accumulation of senescent cells after CDI followed by IBS and/or IBD.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Fabrizio Stracci
- Public Health Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
3
|
Bassotti G, Fruganti A, Stracci F, Marconi P, Fettucciari K. Cytotoxic synergism of Clostridioides difficile toxin B with proinflammatory cytokines in subjects with inflammatory bowel diseases. World J Gastroenterol 2023; 29:582-596. [PMID: 36742168 PMCID: PMC9896618 DOI: 10.3748/wjg.v29.i4.582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Clostridioides difficile (C. difficile) is progressively colonizing humans and animals living with humans. During this process, hypervirulent strains and mutated toxin A and B of C. difficile (TcdA and TcdB) are originating and developing. While in healthy subjects colonization by C. difficile becomes a risk after the use of antibiotics that alter the microbiome, other categories of people are more susceptible to infection and at risk of relapse, such as those with inflammatory bowel disease (IBD). Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma (CKs). Therefore, in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C. difficile infection and its progression and relapses. TcdB is internalized in the cell via three receptors: chondroitin sulphate proteoglycan 4; poliovirus receptor-like 3; and Wnt receptor frizzled family. Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types, while poliovirus receptor-like 3 induces only necrosis. It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis. Therefore, in subjects with IBD there are the conditions: (1) For greater susceptibility to C. difficile infection, such as the inflammatory state, and abnormalities of the microbiome and of the immune system; (2) for the enhancement of the cytotoxic activity of TcdB +Cks; and (3) for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis. The only therapeutic approach currently possible in IBD patients is monitoring of C. difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins. The future perspective is to generate bacteriophages against C. difficile for targeted therapy.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section University of Perugia Medical School, Piazza Lucio Severi, Perugia 06132, Italy, and Santa Maria della Misericordia Hospital, Gastroenterology & Hepatology Unit Perugia 06156, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica 62024, Italy
| | - Fabrizio Stracci
- Medicine and Surgery, Hygiene and Public Health Section, University of Perugia, Perugia 06123, Italy
| | - Pierfrancesco Marconi
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| | - Katia Fettucciari
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
4
|
Kobayashi H, Imanaka S, Shigetomi H. Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis. Oncol Lett 2022; 23:80. [PMID: 35111249 PMCID: PMC8771630 DOI: 10.3892/ol.2022.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in molecular genetics have expanded our understanding of ovarian cancer. High levels of reactive oxygen species (ROS) and upregulation of antioxidant genes are common characteristic features of human cancers. This review reconsiders novel therapeutic strategies for ovarian cancer by focusing on redox homeostasis. A literature search was performed for preclinical and clinical studies published between January 1998 and October 2021 in the PubMed database using a combination of specific terms. ROS serves a central role in tumor suppression and progression by inducing DNA damage and mutations, genomic instability, and aberrant anti- and pro-tumorigenic signaling. Cancer cells increase their antioxidant capacity to neutralize the extra ROS. Additionally, antioxidants, such as CD44 variant isoform 9 (CD44v9) and nuclear factor erythroid 2-related factor 2 (Nrf2), mediate redox homeostasis in ovarian cancer. Furthermore, studies conducted on different cancer types revealed the dual role of antioxidants in tumor progression and inhibition. However, in animal models, genetic loss of antioxidant capacity in the host cannot block cancer initiation and progression. Host-derived antioxidant systems are essential to suppress carcinogenesis, suggesting that antioxidants serve a pivotal role in suppressing cancer development. By contrast, antioxidant activation in cancer cells confers aggressive phenotypes. Antioxidant inhibitors can promote cancer cell death by enhancing ROS levels. Concurrent inhibition of CD44v9 and Nrf2 may trigger apoptosis induction, potentiate chemosensitivity and enhance antitumor activities through the ROS-activated p38/p21 pathway. Antioxidants may have tumor-promoting and -suppressive functions. Therefore, an improved understanding of the role of antioxidants in redox homeostasis and developing antioxidant-specific inhibitors is necessary for treating ovarian cancer.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Ms. Clinic MayOne, Kashihara, Nara 634-0813, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Ms. Clinic MayOne, Kashihara, Nara 634-0813, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Aska Ladies Clinic, Nara 634-0001, Japan
| |
Collapse
|
5
|
Zhang L, Sui R, Zhang L. Fingolimod protects against cerebral ischemia reperfusion injury in rats by reducing inflammatory cytokines and inhibiting the activation of p38 MAPK and NF-κB signaling pathways. Neurosci Lett 2021; 771:136413. [PMID: 34942319 DOI: 10.1016/j.neulet.2021.136413] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Fingolimod (FTY720) is a sphingosine 1-phosphate (S1P) receptor agonist. Here, to understand biological activity of FTY720 pretreatment and post-treatment on cerebral ischemia reperfusion injury (CIRI), rat transient middle cerebral artery occlusion/reperfusion (tMCAO/R) model was generated. Neurological deficit scoring was assessed after tMCAO/R. Four groups were established including sham-operated control group, operated group, and two FTY720-treated groups. Neuron damage was observed by Nissl staining. Gene expression was measured using qPCR and western blot analysis. Tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) levels were evaluated by enzyme-linked immunosorbent assay (ELISA). We uncovered that neurological score in two FTY720-treated groups was significantly lower than that in the operated group. FTY720 pretreatment or posttreatment groups had a significantly increased number of Nissl bodies in cerebral cortex as compared with the operated group, indicating that FTY720 administration reduced neuronal damage. Besides, FTY720 posttreatment improved memory impairment induced by tMCAO/R. In addition, IL-1β, IL-6, and TNF-α levels in the cerebral cortex and hippocampus of two FTY720-treated groups were significantly decreased in comparison to the operated group, showing that FTY720 could reduce the release of inflammatory cytokines in brain tissue. Furthermore, phosphorylation of p38MAPK and NF-κB pathway-related molecules in ischemic brain tissues of FTY720 group were markedly down-regulated compared to the operated group. Together, FTY720 pretreatment or posttreatment improved the neurological deficit of middle cerebral ischemia/reperfusion rat model and reduced neuronal damage by decreasing the levels of inflammatory cytokines and attenuating the phosphorylation levels of p38MAPK and NF-κB pathway-associated molecules. FTY720 exhibits neuroprotective effects against ischemic reperfusion injury in rats.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, PR China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, PR China
| | - Lei Zhang
- Nursing College of Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China.
| |
Collapse
|
6
|
Yang J, Zhou J, Zhao Y, Zhu L, Luo G, Ge B. Hollow CeO 2 with ROS-Scavenging Activity to Alleviate Colitis in Mice. Int J Nanomedicine 2021; 16:6889-6904. [PMID: 34675513 PMCID: PMC8521620 DOI: 10.2147/ijn.s317261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Excessive production of reactive oxygen species (ROS) to induce high oxidative stress is one of the main causes of colitis; thus, it has been regarded as a therapeutic target for colitis treatment. And the nanomaterial-based therapeutic strategies are effective against colitis. However, the previous elaborately designed materials exhibit limited application due to the uncertain biocompatibility and complicated manufacturing processes. Methods In this study, the highly monodisperse hollow CeO2 nanoparticles (H-CeO2) with uniform morphology were obtained by in situ growing CeO2 on solid silica nanoparticles and subsequently removing the silica core. The H-CeO2 was further modified with PEG, which owned excellent biological stability and biocompatibility. The experimental model of colitis induced by dextran sulfate sodium (DSS) was used to investigate the anti-inflammatory effect of H-CeO2-PEG. Results The H-CeO2-PEG showed good ROS scavenging efficacy and decreased the levels of proinflammatory cytokines (IL-6, IL-1β, IL-18, and TNF-α) in DSS-induced colitis mice. Furthermore, H-CeO2-PEG inhibited the activation of the MAPK signalling pathway to alleviate colitis. Conclusion This study reveals the therapeutic effects of CeO2-based nanomedicine toward colitis and elucidates the specific signalling pathway involved, which provides potential alternative therapeutic options for patients with inflammation tissue.
Collapse
Affiliation(s)
- Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Jinzhe Zhou
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Liangchen Zhu
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guanghong Luo
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - BuJun Ge
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Fettucciari K, Marconi P, Marchegiani A, Fruganti A, Spaterna A, Bassotti G. Invisible steps for a global endemy: molecular strategies adopted by Clostridioides difficile. Therap Adv Gastroenterol 2021; 14:17562848211032797. [PMID: 34413901 PMCID: PMC8369858 DOI: 10.1177/17562848211032797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) is on the rise worldwide and is associated with an increase in deaths and socio-health burden. C. difficile has become ubiquitous in anthropized environments because of the extreme resistance of its spores. Based on the epidemiological data and knowledge of molecular pathogenesis of C. difficile, it is possible to predict its progressive colonization of the human population for the following reasons: first, its global spread is unstoppable; second, the toxins (Tcds) produced by C. difficile, TcdA and TcdB, mainly cause cell death by apoptosis, but the surviving cells acquire a senescence state that favours persistence of C. difficile in the intestine; third, proinflammatory cytokines, tumour necrosis factor-α and interferon-γ, induced during CDI, enhance the cytotoxicity of Tcds and can increase the survival of senescent cells; fourth, Tcds block mobility and induce apoptosis in immune cells recruited at the infection site; and finally, after remission from primary infection or relapse, C. difficile causes functional abnormalities in the enteric glial cell (EGC) network that can result in irritable bowel syndrome, characterized by a latent inflammatory response that contributes to C. difficile survival and enhances the cytotoxic activity of low doses of TcdB, thus favouring further relapses. Since a 'global endemy' of C. difficile seems inevitable, it is necessary to develop an effective vaccine against Tcds for at-risk individuals, and to perform a prophylaxis/selective therapy with bacteriophages highly specific for C. difficile. We must be aware that CDI will become a global health problem in the forthcoming years, and we must be prepared to face this menace.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Medical School -Piazza Lucio Severi 1, Edificio B - IV piano; Sant’Andrea delle Fratte, Perugia, 06132, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
8
|
The role of the globular heads of the C1q receptor in TcdA-induced human colonic epithelial cell apoptosis via a mitochondria-dependent pathway. BMC Microbiol 2020; 20:274. [PMID: 32878596 PMCID: PMC7465811 DOI: 10.1186/s12866-020-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clostridioides (formerly Clostridium) difficile infection is the leading cause of antibiotic-associated colitis. Studies have demonstrated that C. difficile toxin A (TcdA) can cause apoptosis of many human cell types. The purpose of this study was to investigate the relationships among exposure to TcdA, the role of the receptor for the globular heads of C1q (gC1qR) gene and the underlying intracellular apoptotic mechanism in human colonic epithelial cells (NCM 460). In this study, gC1qR expression was examined using real-time polymerase chain reaction (PCR), western blotting and immunohistochemical staining. Cell viability was assessed by the water-soluble tetrazolium salt (WST-1) assay, and cell apoptosis was assessed by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Mitochondrial function was assessed based on reactive oxygen species (ROS) generation, changes in the mitochondrial membrane potential (ΔΨm) and the content of ATP. RESULTS Our study demonstrated that increasing the concentration of TcdA from 10 ng/ml to 20 ng/ml inhibited cell viability and induced cell apoptosis (p < 0.01). Moreover, the TcdA-induced gC1qR expression and enhanced expression of gC1qR caused mitochondrial dysfunction (including production of ROS and decreases in the ΔΨm and the content of ATP) and cell apoptosis. However, silencing of the gC1qR gene reversed TcdA-induced cell apoptosis and mitochondrial dysfunction. CONCLUSION These data support a mechanism by which gC1qR plays a crucial role in TcdA-induced apoptosis of human colonic epithelial cells in a mitochondria-dependent manner.
Collapse
|
9
|
Zhang Y, Feng Z, Wang W, Dong J, Gong X, Pu H, Chen X. Expression of Heat Shock Protein-27 (Hsp27) and P38MAPK in Esophageal Squamous Cell Carcinoma. Med Sci Monit 2017; 23:5246-5253. [PMID: 29099815 PMCID: PMC5683682 DOI: 10.12659/msm.904912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a worldwide concern. This study looked at the relationship between the expression of differential proteins and the clinicopathological data and survival rate of ESCC patients to identify potential tumor markers for the growth and metastasis of ESCC. Material/Methods This study included 162 patients who underwent surgical excision for management of ESCC. Fresh ESCC tissue and adjacent normal tissue specimens were collected. Protein expressions were detected by western blotting. The expression of Hsp27 and P38MAPK were detected by immunohistochemistry in formalin-fixed paraffin embedded primary tissue specimens. Results The rate of positive Hsp27 and P38MAPK expression in ESCC tissue were higher than in normal esophageal tissue (p<0.05). The expression of P38MAPK was related to the depth of infiltration (p<0.05). The expression of Hsp27 was correlated with lymph node metastasis (p<0.05), but not with age, depth of infiltration, or tumor size. ROC were plotted to estimate the significance of the diagnosis: for Hsp27, AUC=0.735 (p<0.05), for P38MAPK, AUC=0.882 (p<0.05). Conclusions The expression of Hsp27 and P38MAPK plays a role in ESCC development. Hsp27 and P38MAPK could be used as prognostic factors in ESCC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, College of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Zhiyin Feng
- Department of Pathology, College of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Weina Wang
- Department of Pathology, The Third Affiliated hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Juanjuan Dong
- Department of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xiaojin Gong
- Department of Pathology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Hongwei Pu
- Department of Science and Research Education Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xiao Chen
- Department of Pathology, College of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|