1
|
Shintani T, Shun YT, Toyozumi Y, Ikemura K, Shiroyama T, Nagatomo I, Jingushi K, Takeda Y, Kumanogoh A, Okuda M. MicroRNA-130a-3p regulates osimertinib resistance by targeting runt-related transcription factor 3 in lung adenocarcinoma. Sci Rep 2024; 14:24429. [PMID: 39424918 PMCID: PMC11489462 DOI: 10.1038/s41598-024-76196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Overcoming resistance to epidermal growth factor receptor tyrosine kinase inhibitors, including osimertinib, is urgent to improve lung cancer treatment outcomes. Extracellular vesicle (EV)-derived microRNAs (EV-miRNAs) play important roles in drug resistance and serve as promising biomarkers. In this study, we aimed to identify EV-miRNAs associated with osimertinib resistance and investigate their clinical relevance. The release of excess EVs was confirmed in the osimertinib-resistant lung adenocarcinoma cell line PC9OR. The exposure of PC9OR-derived EVs and EV-miRNAs to PC9 cells increased cell viability after osimertinib treatment. Microarray analysis revealed that miR-130a-3p was upregulated in EVs derived from PC9OR cells and another osimertinib-resistant cell line (H1975OR). Transfection with miR-130a-3p attenuated osimertinib-induced cytotoxicity and apoptosis in both PC9 and H1975 cells, whereas osimertinib resistance in PC9OR cells was reversed after miR-130a-3p inhibition. Bioinformatics analysis revealed that runt-related transcription factor 3 is a target gene of miR-130a-3p, and it induced osimertinib resistance in PC9 cells. Patients with lower baseline serum miR-130a-3p concentrations had longer progression-free survival. miR-130a-3p is a potential therapeutic target and a predictive biomarker of osimertinib resistance in adenocarcinomas.
Collapse
Affiliation(s)
- Takuya Shintani
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yu-Ting Shun
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Toyozumi
- Department of Hospital Pharmacy, School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Ikemura
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Okuda
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, Alsaweed M, Iqbal D, Pandey P, Al Othaim A, Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol 2024; 12:1397945. [PMID: 39263322 PMCID: PMC11387185 DOI: 10.3389/fcell.2024.1397945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women and poses a serious threat to health. Despite familiarity with the factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected the previous aspects of CC progression and treatment in recent decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting translation of the target mRNA. miRNAs play a crucial role in CC pathogenesis by promoting cancer stem cell (CSC) proliferation, postponing apoptosis, continuing the cell cycle, and promoting invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important CC-related molecular pathways, such as the PI3K/AKT/mTOR signaling pathway, Wnt/β-catenin system, JAK/STAT signaling pathway, and MAPK signaling pathway. Moreover, miRNAs affect the response of CC patients to chemotherapy and radiotherapy. Consequently, this review aims to provide an acquainted summary of onco miRNAs and tumor suppressor (TS) miRNAs and their potential role in CC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.
Collapse
Affiliation(s)
| | - Sreepoorna Pramodh
- Department of Biomedical Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Di Fiore R, Drago-Ferrante R, Suleiman S, Calleja N, Calleja-Agius J. The role of microRNA-9 in ovarian and cervical cancers: An updated overview. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108546. [PMID: 39030109 DOI: 10.1016/j.ejso.2024.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Ovarian and cervical cancers are the two most frequent kind of gynaecological cancers (GCs). In spite of advances in prevention, screening and treatment, cervical cancer still leads to an increased morbidity and mortality worldwide. Ovarian cancer is often detected at a late stage, which significantly reduces the effectiveness of available treatments. Therefore, novel methods are desperately needed to improve the clinical care of GC patients. MicroRNAs, also known as short noncoding RNAs (miRNAs/miRs), are a diverse group of RNAs with a length of 22 nucleotides. These typically cause translational repression and mRNA degradation by interacting with target mRNAs' 3' untranslated region (3'-UTR), together with other regions and gene promoters. Under certain conditions, they are also able to activate translation or regulate transcription. It has been demonstrated that miRNAs are crucial to several biological processes leading to tumorigenesis, including GCs. Recent research has shown that miR-9 affects carcinogenesis. In this review, we will provide an overview of current research on the potential utility of miR-9 in the diagnosis, prognosis, and therapy of ovarian and cervical malignancies.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | - Rosa Drago-Ferrante
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; BioDNA Laboratories, Malta Life Sciences Park, SGN, 3000, San Gwann, Malta.
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Neville Calleja
- Department of Public Health, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| |
Collapse
|
4
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
5
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
6
|
Endothelin-3 is epigenetically silenced in endometrioid endometrial cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04525-w. [PMID: 36542159 PMCID: PMC10356642 DOI: 10.1007/s00432-022-04525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Abstract
Purpose
Changes in the activity of endothelins and their receptors may promote neoplastic processes. They can be caused by epigenetic modifications and modulators, but little is known about endothelin-3 (EDN3), particularly in endometrial cancer. The aim of the study was to determine the expression profile of endothelin family and their interactions with miRNAs, and to assess the degree of EDN3 methylation.
Methods
The study enrolled 45 patients with endometrioid endometrial cancer and 30 patients without neoplastic changes. The expression profile of endothelins and their receptors was determined with mRNA microarrays and RT-qPCR. The miRNA prediction was based on the miRNA microarray experiment and the mirDB tool. The degree of EDN3 methylation was assessed by MSP.
Results
EDN1 and EDNRA were overexpressed regardless of endometrial cancer grade, which may be due to the lack of regulatory effect of miR-130a-3p and miR-485-3p, respectively. In addition, EDN3 and EDNRB were significantly downregulated.
Conclusion
The endothelial axis is disturbed in endometrioid endometrial cancer. The observed silencing of EDN3 activity may be mainly due to DNA methylation.
Collapse
|
7
|
The imminent role of microRNAs in salivary adenoid cystic carcinoma. Transl Oncol 2022; 27:101573. [PMID: 36335706 PMCID: PMC9646983 DOI: 10.1016/j.tranon.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Unfortunately, despite the severe problem associated with salivary adenoid cystic carcinoma (SACC), it has not been studied in detail yet. Therefore, the time has come to understand the oncogenic cause of SACC and find the correct molecular markers for diagnosis, prognosis, and therapeutic target to tame this disease. Recently, we and others have suggested that non-coding RNAs, specifically microRNAs and long non-coding RNAs, can be ideal biomarkers for cancer(s) diagnosis and progression. Herein, we have shown that various miRNAs, like miR-155, miR‑103a‑3p, miR-21, and miR-130a increase the oncogenesis process, whereas some miRNAs such as miR-140-5p, miR-150, miR-375, miR-181a, miR-98, miR-125a-5p, miR-582-5p, miR-144-3p, miR-320a, miR-187 and miR-101-3p, miR-143-3p inhibit the salivary adenoid cystic carcinoma progression. Furthermore, we have found that miRNAs also target many vital genes and pathways like mitogen-activated protein kinases-snail family transcriptional repressor 2 (MAPK-Snai2), p38/JNK/ERK, forkhead box C1 protein (FOXC1), mammalian target of rapamycin (mTOR), integrin subunit beta 3 (ITGB3), epidermal growth factor receptor (EGFR)/NF-κB, programmed cell death protein 4 (PDCD4), signal transducer and activator of transcription 3 (STAT3), neuroblastoma RAS (N-RAS), phosphatidylinositol-3-kinase (PI3K)/Akt, MEK/ERK, ubiquitin-like modifier activating enzyme 2 (UBA2), tumor protein D52 (TPD52) which play a crucial role in the regulation of salivary adenoid cystic carcinoma. Therefore, we believe that knowledge from this manuscript will help us find the pathogenesis process in salivary adenoid cystic carcinoma and could also give us better biomarkers of diagnosis and prognosis of the disease.
Collapse
|
8
|
Targeted Therapy Modulates the Secretome of Cancer-Associated Fibroblasts to Induce Resistance in HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413297. [PMID: 34948097 PMCID: PMC8706990 DOI: 10.3390/ijms222413297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
The combination of trastuzumab plus pertuzumab plus docetaxel as a first-line therapy in patients with HER2-positive metastatic breast cancer has provided significant clinical benefits compared to trastuzumab plus docetaxel alone. However, despite the therapeutic success of existing therapies targeting HER2, tumours invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. It is well known that the tumour microenvironment (TME) has a significant impact on cancer behaviour. Cancer-associated fibroblasts (CAFs) are essential components of the tumour stroma that have been linked to acquired therapeutic resistance and poor prognosis in breast cancer. For this reason, it would be of interest to identify novel biomarkers in the tumour stroma that could emerge as therapeutic targets for the modulation of resistant phenotypes. Conditioned medium experiments carried out in our laboratory with CAFs derived from HER2-positive patients showed a significant capacity to promote resistance to trastuzumab plus pertuzumab therapies in two HER2-positive breast cancer cell lines (BCCLs), even in the presence of docetaxel. In order to elucidate the components of the CAF-conditioned medium that may be relevant in the promotion of BCCL resistance, we implemented a multiomics strategy to identify cytokines, transcription factors, kinases and miRNAs in the secretome that have specific targets in cancer cells. The combination of cytokine arrays, label-free LC-MS/MS quantification and miRNA analysis to explore the secretome of CAFs under treatment conditions revealed several up- and downregulated candidates. We discuss the potential role of some of the most interesting candidates in generating resistance in HER2-positive breast cancer.
Collapse
|
9
|
Yaghoubi N, Avval FZ, Khazaei M, Sahebkar A, Aghaee-Bakhtiari SH. High Diagnostic and Prognostic Value of miRNAs Compared with the Carcinoembryonic Antigen as a Traditional Tumor Marker. Anticancer Agents Med Chem 2021; 22:206-214. [PMID: 34102990 DOI: 10.2174/1871520621666210608094908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
A significant challenge in cancer detection and treatment is early diagnosis and accurate prognosis of the disease that enables effective therapies and interventions to improve the patient's condition. Up to now, many parts of research have tended to focus on the carcinoembryonic antigen (CEA) to detect cancers and estimate the survival rates of patients with multiple cancer types, including colorectal, breast, non-small cell lung, and pancreas cancer. Limited sensitivity and specificity of this traditional tumor marker make it an inappropriate biomarker to diagnose cancer, especially in the early stages, while several lines of research have introduced miRNAs as reliable indicators of tumor initiation, development, and therapy response. Indeed, miRNAs have unique properties that provide considerable benefits, such as discriminating benign diseases from malignancies, prediction of cancer possibility and progress, checking sensitivity to treatment, and initial detection of tumors. This review summarizes the relationships between miRNAs and CEA, the diagnostic significance of CEA in combination with miRNAs, and the distinct advantages of miRNAs over CEA as tumor biomarkers. Advancement in our current understanding of miRNAs is essential to discover new and effective biomarkers for diagnostic, prognostic, and therapeutic goals of cancer patients.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
10
|
Plasma-Derived Exosomal microRNA-130a Serves as a Noninvasive Biomarker for Diagnosis and Prognosis of Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:5547911. [PMID: 33953745 PMCID: PMC8068531 DOI: 10.1155/2021/5547911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023]
Abstract
Exosomal microRNAs (miRNAs) are considered as potential stable biomarkers in many types of human cancer, but investigations of plasma-derived exosomal miRNAs in oral squamous cell carcinoma (OSCC) are still lacking. The aim of this study is to evaluate the diagnostic and prognostic values of exosomal miR-130a in OSCC patients. Exosomes were isolated from plasma samples which were collected from 184 OSCC patients before surgery and 196 healthy individuals. Primary OSCC and paired adjacent noncancerous tissues were also obtained from 47 OSCC patients. The expression levels of miR-130a were analyzed by quantitative real-time PCR (qRT-PCR). Our results showed that the expression levels of exosomal miR-130a were significantly higher in OSCC patients than those of the healthy controls (p < 0.0001). Also, the expression of miR-130a was also significantly upregulated in OSCC tissues compared with paired adjacent noncancerous tissues (p < 0.0001). A significant positive correlation was found between exosomal miR-130a and tissue miR-130a levels. Receiver operating characteristic (ROC) analyses yielded an AUC value of 0.812 in discriminating OSCC patients from healthy controls. Furthermore, high levels of exosomal miR-130a were associated with the late T-stage (p=0.024), advanced TNM stage (p=0.003), and poorly differentiated OSCC (p=0.013). Patients with high exosomal miR-130a expression had significantly worse 3-year overall survival (OS) and recurrence-free survival (RFS). Multivariate analysis indicated that exosomal miR-130a was an independent prognostic factor for OS (p=0.001) and RFS (p=0.003). Our results suggest that exosomal miR-130a may serve as a promising diagnostic and prognostic biomarker for OSCC patients.
Collapse
|
11
|
Mallela K, Shivananda S, Gopinath KS, Kumar A. Oncogenic role of MiR-130a in oral squamous cell carcinoma. Sci Rep 2021; 11:7787. [PMID: 33833339 PMCID: PMC8032739 DOI: 10.1038/s41598-021-87388-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant activation of the PI3K/AKT/mTOR pathway is attributed to the pathogenesis of oral squamous cell carcinoma (OSCC). In recent years, increasing evidence suggests the involvement of microRNAs (miRNAs) in oral carcinogenesis by acting as tumor suppressors or oncogenes. TSC1, as a component of the above pathway, regulates several cellular functions such as cell proliferation, apoptosis, migration and invasion. Downregulation of TSC1 is reported in oral as well as several other cancers and is associated with an unfavourable clinical outcome in patients. Here we show that oncogenic miR-130a binds to the 3′UTR of TSC1 and represses its expression. MiR-130a-mediated repression of TSC1 increases cell proliferation, anchorage independent growth and invasion of OSCC cells, which is dependent on the presence of the 3′UTR in TSC1. We observe an inverse correlation between the expression levels of miR-130a and TSC1 in OSCC samples, suggesting that their interaction is physiologically relevant. Delivery of antagomiR-130a to OSCC cells results in a significant decrease in xenograft size. Taken together, the findings of the study indicate that miR-130a-mediated TSC1 downregulation is not only a novel mechanism in OSCC, but also the restoration of TSC1 levels by antagomiR-130a may be a potential therapeutic strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
12
|
Zhao J, Wang H, Zhou J, Qian J, Yang H, Zhou Y, Ding H, Gong Y, Qi X, Jiao Y, Ying P, Tang L, Sun Y, Zhu W. miR-130a-3p, a Preclinical Therapeutic Target for Crohn's Disease. J Crohns Colitis 2021; 15:647-664. [PMID: 33022049 DOI: 10.1093/ecco-jcc/jjaa204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Crohn's disease [CD] is a chronic, relapsing and incurable inflammatory disorder. Micro RNAs [miRNAs], which modulate gene expression by binding to mRNAs, may make significant contributions to understanding the complex pathobiology and aetiology of CD. This study aimed to investigate the therapeutic role and mechanism of miR-130a-3p in CD. METHODS Differentially expressed miRNAs in colon tissues of CD patients and normal controls [NCs] were screened using an miRNA microarray and then validated by quantitative reverse transcriptase-PCR [qRT-PCR]. The functional role of miR-130a-3p in the pathogenesis of CD was then demonstrated by in vitro and in vivo studies. The target genes of miR-130a-3p and the associated signalling pathways were identified using bioinformatics analysis and experimental verification of the interactions between the target predicted by the algorithms and dysregulated mRNAs. The therapeutic role of miR-130a-3p in trinitro-benzene-sulfonic acid [TNBS]-induced colitis models was further investigated. RESULTS Our data demonstrated that miR-130a-3p is the most significantly upregulated miRNA and that miR-130a knockout significantly protects mice against TNBS-induced colitis. Gain- and loss-of-function studies indicated that miR-130a-3p promotes CD development by targeting ATG16L1 via the NF-κB pathway. Furthermore, an miR-130a-3p inhibitor significantly suppressed NLRP3 inflammasome activity by inducing autophagy in a mouse macrophage cell line [RAW264.7]. Therapeutically, an miR-130a-3p inhibitor effectively ameliorated the severity of TNBS-induced colitis. CONCLUSION Our study reveals that miR-130a-3p promotes CD progression via the ATG16L1/NF-κB pathway and serves as a potential preclinical therapeutic target in CD.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Medical School of Nantong University, Taizhou, Jiangsu, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Ding
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yu Gong
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xiaoyang Qi
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuwen Jiao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Pu Ying
- Department of Orthopedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Fan Q, Huang T, Sun X, Yang X, Wang J, Liu Y, Ni T, Gu S, Li Y, Wang Y. miR-130a-3p promotes cell proliferation and invasion by targeting estrogen receptor α and androgen receptor in cervical cancer. Exp Ther Med 2021; 21:414. [PMID: 33747155 PMCID: PMC7967885 DOI: 10.3892/etm.2021.9858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is the most common gynecological cancer in women worldwide. Human papillomavirus (HPV) is required but not sufficient for developing cervical cancer. HPV E6 and E7 proteins are able to directly interact with certain nuclear receptors; however, whether steroid hormone receptors mediate cervical carcinogenesis is not completely understood. The present study demonstrated via immunohistochemistry that estrogen receptor α (ERα) and androgen receptor (AR) expression were decreased in a sequential manner from healthy cervical tissues to cervical intraepithelial neoplasia tissues and further to cervical cancer (CC) tissues, whereas microRNA (miR)-130a-3p expression levels were higher in CC tissues compared with healthy tissues. Both ERα and AR were direct targets of miR-130a-3p, as determined by performing luciferase reporter assays and western blotting. Functionally, compared with the corresponding control groups, miR-130a-3p knockdown, ERα overexpression and AR overexpression significantly inhibited CC cell proliferation and invasion, as demonstrated by the results obtained from the Cell Counting Kit-8 and Transwell assays in vitro. In addition, antagomiR-130a decreased tumor size and weight in vivo compared with control antagomiR as determined via the xenograft tumor growth assay. Therefore, the results suggested that miR-130a-3p might contribute to tumor progression by suppressing ERα and AR, and serve as a promising candidate target for the treatment of patients with CC.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,Shanghai Municipal Key Clinical Specialty, Shanghai 200030, P.R. China
| | - Ting Huang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,Shanghai Municipal Key Clinical Specialty, Shanghai 200030, P.R. China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yao Liu
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ting Ni
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Shenglan Gu
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,Shanghai Municipal Key Clinical Specialty, Shanghai 200030, P.R. China
| |
Collapse
|
14
|
Zheng L, Wang Z, Li Z, Wang M, Wang W, Chang G. MicroRNA-130a inhibits proliferation of vascular smooth muscle cells by suppressing autophagy via ATG2B. J Cell Mol Med 2021; 25:3829-3839. [PMID: 33611856 PMCID: PMC8051697 DOI: 10.1111/jcmm.16305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
Numerous microRNAs participate in regulating the pathological process of atherosclerosis. We have found miR-130a is one of the most significantly down-regulated microRNAs in arteriosclerosis obliterans. Our research explored the function of miR-130a in regulating proliferation by controlling autophagy in arteriosclerosis obliterans development. A Gene Ontology (GO) enrichment analysis of miR-130a target genes indicated a correlation between miR-130a and cell proliferation. Thus, cell cycle, CCK-8 assays and Western blot analysis were performed, and the results indicated that miR-130a overexpression in vascular smooth muscle cells (VSMCs) significantly attenuated cell proliferation, which was validated by an in vivo assay in a rat model. Moreover, autophagy is thought to be involved in the regulation of proliferation. As our results indicated, miR-130a could inhibit autophagy, and ATG2B was predicted to be a target of miR-130a. The autophagy inhibition effect of miR-130a overexpression was consistent with the effect of ATG2B knockdown. The results that ATG2B plasmids and miR-130a mimics were cotransfected in VSMCs further confirmed our conclusion. In addition, by using immunohistochemistry, the positive results of LC3 II/I and ATG2B in the rat model and artery vascular tissues from the patient were in accordance with in vitro data. In conclusion, our data demonstrate that miR-130a inhibits VSMCs proliferation via ATG2B, which indicates that miR-130a could be a potential therapeutic target that regulates autophagy in atherosclerosis obliterans.
Collapse
Affiliation(s)
- Liang Zheng
- Laboratory of General Surgery, Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhecun Wang
- Laboratory of General Surgery, Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilun Li
- Laboratory of General Surgery, Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- Laboratory of General Surgery, Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjian Wang
- Laboratory of General Surgery, Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangqi Chang
- Laboratory of General Surgery, Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Abdi E, Latifi-Navid S, Abdi F, Taherian-Esfahani Z. Emerging circulating MiRNAs and LncRNAs in upper gastrointestinal cancers. Expert Rev Mol Diagn 2020; 20:1121-1138. [DOI: 10.1080/14737159.2020.1842199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Abdi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Zahra Taherian-Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Robak P, Dróżdż I, Jarych D, Mikulski D, Węgłowska E, Siemieniuk-Ryś M, Misiewicz M, Stawiski K, Fendler W, Szemraj J, Smolewski P, Robak T. The Value of Serum MicroRNA Expression Signature in Predicting Refractoriness to Bortezomib-Based Therapy in Multiple Myeloma Patients. Cancers (Basel) 2020; 12:cancers12092569. [PMID: 32916955 PMCID: PMC7565855 DOI: 10.3390/cancers12092569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Bortezomib is the first-in-class proteasome inhibitor, commonly used in the treatment of multiple myeloma (MM). The mechanisms underlying acquired bortezomib resistance in MM are poorly understood. Several cell-free miRNAs have been found to be aberrantly regulated in MM patients. The aim of this pilot study was to identify a blood-based miRNA signature that predicts bortezomib-based therapy efficacy in MM patients. Thirty MM patients treated with bortezomib-based regimens were studied, including 19 with refractory disease and 11 who were bortezomib sensitive. Serum miRNA expression patterns were identified with miRCURY LNA miRNA miRNome PCR Panels I+II (Exiqon/Qiagen). Univariate analysis found a total of 21 miRNAs to be differentially expressed in patients with MM according to bortezomib sensitivity. Multivariate logistic regression was created and allowed us to discriminate refractory from sensitive patients with a very high AUC of 0.95 (95%CI: 0.84-1.00); sensitivity, specificity and accuracy were estimated as 0.95, 0.91, and 0.93. The model used expression of 3 miRNAs: miR-215-5p, miR-181a-5p and miR-376c-3p. This study is the first to demonstrate that serum expression of several miRNAs differs between patients who are bortezomib refractory and those who are sensitive which may prove useful in studies aimed at overcoming drug resistance in MM treatment.
Collapse
Affiliation(s)
- Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (P.R.); (P.S.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Dariusz Jarych
- Laboratory of Personalized Medicine, Bionanopark, Lodz, 93-465 Lodz, Poland; (D.J.); (E.W.)
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.S.); (W.F.)
| | - Edyta Węgłowska
- Laboratory of Personalized Medicine, Bionanopark, Lodz, 93-465 Lodz, Poland; (D.J.); (E.W.)
| | - Monika Siemieniuk-Ryś
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.S.-R.); (M.M.)
| | - Małgorzata Misiewicz
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.S.-R.); (M.M.)
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.S.); (W.F.)
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.S.); (W.F.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (P.R.); (P.S.)
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.S.-R.); (M.M.)
- Correspondence: ; Tel.: +48-42-689-51-91; Fax: +48 42-689-51-92
| |
Collapse
|
17
|
Chen L, Kan Y, Wang X, Ge P, Ding T, Zhai Q, Wang Y, Yu Y, Wang X, Zhao Z, Yang H, Liu X, Li L, Qiu L, Zhang H, Qian Z, Zhao H. Overexpression of microRNA-130a predicts adverse prognosis of primary gastrointestinal diffuse large B-cell lymphoma. Oncol Lett 2020; 20:93. [PMID: 32831912 PMCID: PMC7439117 DOI: 10.3892/ol.2020.11954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Primary gastrointestinal diffuse large B-cell lymphoma (PGI-DLBCL) is a highly heterogeneous type of non-Hodgkin lymphoma. A number of studies have demonstrated that microRNA-130a (miR-130a) serves a role in the tumorigenesis and prognosis of numerous human tumors. However, to the best of our knowledge, the prognostic significance of miR-130a in PGI-DLBCL remains unknown. The present study explored the association between miR-130a and the clinical outcomes of PGI-DLBCL. Relative miR-130a expression was assessed by reverse transcription-quantitative PCR. Immunohistochemistry was used to detect expression levels of BCL-2, c-MYC, neprilysin, B-cell lymphoma 6 protein, PWWP domain-containing DNA repair factor 3A and proliferation marker protein Ki-67. A receiver operating characteristic curve was constructed to analyze the specificity and sensitivity of microRNA levels in the diagnosis of PGI-DLBCL. Survival curves were constructed using the Kaplan-Meier method. In the present study, miR-130a expression was notably higher in patients with PGI-DLBCL compared with in the controls (P<0.0001). miR-130a overexpression was closely associated with a high International Prognostic Index score (3–5) and drug resistance (P=0.017 and P=0.044, respectively). No significant difference in other clinical features was observed. Patients with increased expression levels of miR-130a had lower overall survival [hazard ratio (HR), 2.998; 95% CI, 1.347-6.673; P=0.007] and progression-free survival (HR, 3.325; 95% CI, 1.488-7.429; P=0.003) compared with patients who had lower expression levels of miR-130a. Furthermore, multivariate Cox regression analysis suggested that miR-130a was a negative prognostic parameter in PGI-DLBCL. Therefore, upregulation of miR-130a could become a potential prognostic marker for PGI-DLBCL. Additionally, further study of these results may have important guiding significance for the prognosis of patients with PGI-DLBCL in the clinical setting.
Collapse
Affiliation(s)
- Leiyuan Chen
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yutian Kan
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xinyuan Wang
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Ge
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Tingting Ding
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Qiongli Zhai
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yafei Wang
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yong Yu
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaofang Wang
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Zhigang Zhao
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hongliang Yang
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xianming Liu
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lanfang Li
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lihua Qiu
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Huilai Zhang
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Zhengzi Qian
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Haifeng Zhao
- Department of Hematology and Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
18
|
Zhu J, Zheng X, Yang X. Diagnostic and mechanistic values of microRNA-130a and microRNA-203 in patients with papillary thyroid carcinoma. J Cell Biochem 2020; 121:3657-3666. [PMID: 31692045 DOI: 10.1002/jcb.29498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
This research was determined to unearth the diagnostic values and the effects of microRNA (miR)-130a and miR-203 on cell proliferation and apoptosis of papillary thyroid carcinoma (PTC). Expression of miR-130a and miR-203 were evaluated and were subjected to correlation analysis. The diagnostic values of miR-130a and miR-203 and their associations with clinicopathological characteristics of patients with PTC were measured. The expression levels of miR-130a and miR-203 in K1, IHH4, TPC-1, and BCPAP cells together with Nthy-ori 3-1 cells were measured. Cells were transfected with miR-130a mimics, miR-203 mimics, and coordinate of miR-130a mimics and miR-203 mimics. Cell growth, colony formation, and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay, and flow cytometry. PTC tissues had decreased miR-130a and miR-203 relative to adjacent normal tissues and normal thyroid tissue (both P < .05). miR-130a was in positive correlation with miR-203 (r = 0.754, P < .01). miR-130a was related with tumor infiltration and tumor stage while miR-203 was implicated in tumor stage and lymph-node metastasis. The area under the curve (AUC), sensitivity, as well as specificity for miR-130 in predicting PTC was 0.839, 74.5%, and 85.0% and those for miR-203 were 0.818, 73.7%, and 84.0%, respectively. PTC cells had lower expression of miR-130a and miR-203 than that in Nthy-ori 3-1 cells. After transfected miR-130a and miR-203 mimics in BCPAP and TPC-1 cells, both cells had increased miR-130a and miR-203, promoted cell apoptosis rate and decreased cell growth rate, and colony formation ability. After coordinately transfected with miR-130a mimics and miR-203 mimics, the cell growth and colony formation ability of PTC cells were restrained, and apoptosis of PTC cells was elevated (all P < .05). This study highlights that miR-130a and miR-203 have satisfactory diagnostic value in PTC and upregulated miR-130a and miR-203 can inhibit PTC cell growth and promote cell apoptosis.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Endocrinology, Linyi People's Hospital, Linyi, China
| | - Xiaoyu Zheng
- Department of Health and Rehabilitation, Shandong Medical College, Linyi, China
| | - Xi Yang
- Department of Internal Medicine, Linyi Health School of Shandong, Linyi, China
| |
Collapse
|
19
|
Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. Aging (Albany NY) 2020; 12:10180-10193. [PMID: 32457253 PMCID: PMC7346016 DOI: 10.18632/aging.103340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/18/2020] [Indexed: 12/30/2022]
Abstract
Aging is associated with impaired neovascularization in response to ischemia. MicroRNAs are small noncoding RNAs emerging as key regulators of physiological and pathological processes. Here we investigated the potential role of microRNAs in endothelial cell senescence and age-dependent impairment of neovascularization. Next generation sequencing and qRT-PCR analyses identified miR-130a as a pro-angiogenic microRNA which expression is significantly reduced in old mouse aortic endothelial cells (ECs). Transfection of young ECs with a miR-130a inhibitor leads to accelerated senescence and reduced angiogenic functions. Conversely, forced expression of miR-130a in old ECs reduces senescence and improves angiogenesis. In a mouse model of hindlimb ischemia, intramuscular injection of miR-130a mimic in older mice restores blood flow recovery and vascular densities in ischemic muscles, improves mobility and reduces tissue damage. miR-130a directly targets antiangiogenic homeobox genes MEOX2 and HOXA5. MEOX2 and HOXA5 are significantly increased in the ischemic muscles of aging mice, but forced expression of miR-130a reduces the expression of these factors. miR-130a treatment after ischemia is also associated with increased number and improved functional activities of pro-angiogenic cells (PACs). Forced expression of miR-130a could constitute a novel strategy to improve blood flow recovery and reduce ischemia in older patients with ischemic vascular diseases.
Collapse
|
20
|
Wang Y, Gu J, Hu L, Kong L, Wang T, Di M, Li C, Gui S. miR-130a alleviates neuronal apoptosis and changes in expression of Bcl-2/Bax and caspase-3 in cerebral infarction rats through PTEN/PI3K/Akt signaling pathway. Exp Ther Med 2020; 19:2119-2126. [PMID: 32104274 PMCID: PMC7027342 DOI: 10.3892/etm.2020.8415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
Effect of micro ribonucleic acid (miR)-130a on neuronal apoptosis in rats with cerebral infarction (CI) was studied to explore whether phosphatase and tensin homolog deleted on chromosome ten (PTEN)/phosphatidylinositol 3-hydroxy kinase (PI3K)/protein kinase B (Akt) is involved in the regulation of neuronal apoptosis. Thirty-six Sprague-Dawley (SD) rats were randomly divided into blank control group, model group and miR-130a low-expression group. miR-130a was determined by quantitative polymerase chain reaction (qPCR), the content of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-10 was detected using the enzyme-linked immunosorbent assay (ELISA) kits, and the neuronal apoptosis level in each group was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. The neurobehavioral score was significantly lower in model group than that in blank control group (P<0.01), while it was significantly higher in miR-130a low-expression group than that in model group (P<0.01). Compared with blank control group, the model group had obviously increased content of TNF-α and IL-6 (P<0.01), decreased content of IL-10 (P<0.01), more apoptotic neurons (P<0.01), higher expression of caspase-3 (P<0.01), and obviously lower Bcl-2/Bax (P<0.01). Moreover, expression of phosphorylated (p)-PTEN, PI3K and p-Akt in brain tissues was remarkably lower in the model group than those in the blank control group (P<0.01). The expression level of miR-130a in brain tissues of CI rats is significantly increased. miR-130a promotes the release of inflammatory factors and facilitates neuronal apoptosis through suppressing the PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yinming Wang
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| | - Junquan Gu
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| | - Linlin Hu
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| | - Liang Kong
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| | - Tinggang Wang
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| | - Meiqi Di
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| | - Chaosheng Li
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| | - Shuhua Gui
- Department of Neurology, The Third People's Hospital of Wuxi, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
21
|
Wang Z, Li Z, Fu Y, Han L, Tian Y. MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1. Am J Transl Res 2019; 11:7272-7285. [PMID: 31934277 PMCID: PMC6943444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Specificity protein 1 (Sp1) is aberrantly expressed and involved in the development and metastasis of glioblastoma. In this study, we observed that the expression of Sp1 was upregulated while that of microRNA (miR)-130a-3p was downregulated in glioblastoma cell lines. Sp1 was validated as a target of miR-130a-3p; increased levels of miR-130a-3p inhibited the proliferation, migration, and temozolomide (TMZ) resistance of the glioblastoma cells. However, Sp1 overexpression compromised the inhibitory effects of miR-130a-3p. Our study elucidates the functional interaction between miR-130a-3p and Sp1 in the development and progression of glioblastoma, suggesting a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
- Department of Pediatric Surgery, The First Hospital of Jilin UniversityChangchun 130000, P. R. China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| | - Yao Fu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| | - Yu Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| |
Collapse
|
22
|
Lara OD, Wang Y, Asare A, Xu T, Chiu HS, Liu Y, Hu W, Sumazin P, Uppal S, Zhang L, Rauh-Hain JA, Sood AK. Pan-cancer clinical and molecular analysis of racial disparities. Cancer 2019; 126:800-807. [PMID: 31730714 DOI: 10.1002/cncr.32598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Racial disparities in cancer outcomes are increasingly recognized, but comprehensive analyses, including molecular studies, are limited. The objective of the current study was to perform a pan-cancer clinical and epigenetic molecular analysis of outcomes in African American (AA) and European American (EA) patients. METHODS Cross-platform analyses using cancer databases (the Surveillance, Epidemiology, and End Results program database and the National Cancer Data Base) and a molecular database (The Cancer Genome Ancestry Atlas) were performed to evaluate clinical and epigenetic molecular differences between AA and EA patients based on genetic ancestry. RESULTS In the primary pan-cancer survival analysis using the Surveillance, Epidemiology, and End Results database (2,045,839 patients; 87.5% EA and 12.5% AA), AA patients had higher mortality rates for 28 of 42 cancer types analyzed (hazard ratio, >1.0). AAs continued to have higher mortality in 13 cancer types after adjustment for socioeconomic variables using the National Cancer Database (5,150,023 patients; 11.6% AA and 88.4% EA). Then, molecular features of 5,283 tumors were analyzed in patients who had genetic ancestry data available (87.2% EA and 12.8% AA). Genes were identified with altered DNA methylation along with increased microRNA expression levels unique to AA patients that are associated with cancer drug resistance. Increased miRNAs (miR-15a, miR-17, miR-130-3p, miR-181a) were noted in common among AAs with breast, kidney, thyroid, or prostate carcinomas. CONCLUSIONS The current results identified epigenetic features in AA patients who have cancer that may contribute to higher mortality rates compared with EA patients who have cancer. Therefore, a focus on molecular signatures unique to AAs may identify actionable molecular abnormalities.
Collapse
Affiliation(s)
- Olivia D Lara
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amma Asare
- Baylor College of Medicine, Houston, Texas
| | - Tao Xu
- Department of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Shitanshu Uppal
- Department of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Alejandro Rauh-Hain
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Peng Z, Duan F, Yin J, Feng Y, Yang Z, Shang J. Prognostic values of microRNA-130 family expression in patients with cancer: a meta-analysis and database test. J Transl Med 2019; 17:347. [PMID: 31640738 PMCID: PMC6805372 DOI: 10.1186/s12967-019-2093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/11/2019] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Emerging evidence shows that microRNA-130 (miRNA-130) family may be useful as prognostic biomarkers in cancer. However, there is no confirmation in an independent validation study. The aim of this study was to summarize the prognostic value of miRNA-130 family (miRNA-130a and miRNA-130b) for survival in patients with cancer. METHODS The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to estimate the association strength between miRNA-130 family expression and prognosis. Kaplan-Meier plotters were used to verify the miRNA-130b expression and overall survival (OS). RESULTS A total of 2141 patients with OS and 1159 patients with disease-free survival (DFS)/progression-free survival (PFS) were analyzed in evidence synthesis. For the miRNA-130a, the overall pooled effect size (HR) was HR 1.58 (95% CI: 1.21-2.06, P < 0.001). Tissue and serum expression of miRNA-130a was significantly associated with the OS (HR = 1.54, 95% CI: 1.11-2.14, P = 0.009; HR = 1.65, 95% CI: 1.14-2.38, P = 0.008), and in gastric cancer (HR = 1.81, 95% CI: 1.34-2.45, P < 0.001). For the miRNA-13b, a statistical correlation was observed between high miRNA-130b expression and poor OS in patients with cancer (HR = 1.95, 95% CI: 1.47-2.59, P < 0.001), especially in tissue sample (HR = 2.01, 95% CI: 1.39-2.91, P < 0.001), Asian (HR = 2.55, 95% Cl: 1.77-3.69, P < 0.001) and hepatocellular carcinoma (HR = 1.87, 95% CI: 1.23-2.85, P = 0.004). The expression of miRNA-130b was significantly correlated with DFS/PFS (HR = 1.53, 95% CI: 1.31-1.77, P < 0.001), in tissue (HR = 1.98, 95% CI: 1.50-2.62, P < 0.001) and serum (HR = 1.37, 95% CI: 1.15-1.64, P < 0.001), especially in HCC (HR = 1.98, 95% CI: 1.50, 2.62, P < 0.001). In database test, a significant correlation between high miRNA-130b expression and poor OS for HCC patients was observed (HR = 1.55, 95% CI: 1.01, 2.35, P = 0.0045). CONCLUSION The high expression of miRNA-130 family might predict poor prognosis in cancer patients. Prospectively, combining miRNA-130a and miRNA-130b may be considered as powerful prognostic predictor for clinical application.
Collapse
Affiliation(s)
- Zhen Peng
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| | - Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jingjing Yin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yajing Feng
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongyu Yang
- College of Art and Science, The Ohio State University, Columbus, OH, USA
| | - Jia Shang
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
24
|
Wang J, Yu XF, OUYang N, Luo Q, Tong J, Chen T, Li J. Role of DNA methylation regulation of miR-130b expression in human lung cancer using bioinformatics analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:935-943. [PMID: 31524549 DOI: 10.1080/15287394.2019.1667634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in various crucial biological processes including regulation of cell differentiation, proliferation, and migration, and are closely associated with tumor development. This study aimed to investigate miR-130b expression levels in lung cancer patient tissues. Two Gene Expression Omnibus (GEO) databases, including GSE48414 and GSE74190, and two The Cancer Genome Atlas (TCGA) databases including TCGA LUAD and TCGA LUSC, were accessed to obtain information for differential expression analysis and clinical-pathological correlation analysis. The results showed that miR-130b expression levels were significantly increased in lung cancer compared to normal tissues. Data also demonstrated that confounding factors such as tumor clinical stages and tumor invasion depth markedly affected miR-130b expression levels in cancer patients. A total of 169 target genes modified by miR-130b expression were identified by using 4 online websites for target gene prediction. Further enrichment analysis indicated that these 169 target genes were significantly enriched in several cancer-related biological processes and signaling pathways, including wound healing, cell proliferation, Wnt signaling, Ras signaling, and mTOR signaling. It was also of interest to examine the seven sites on the promoter region of miR-130b encoding gene in lung cancer patients and then compare methylation at these loci with miR-130b expression. The correlation analysis between encoding gene methylation and miR-130b expression in TCGA datasets revealed that decreased methylation in the promoter region was significantly associated with elevated miR-130b expression. This phenomenon was markedly dependent upon smoking history and clinical-pathological features. In conclusion, data indicated alterations in the methylation of DNA promoter region of miR-130b encoding gene were associated with disturbances in miR-130b expression in lung cancer patients suggesting that the DNA methylation process and miR-130b expression may serve as biomarkers for detection of lung cancer.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Xiao-Fan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Qiulin Luo
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| |
Collapse
|
25
|
Yu XF, Wang J, OUYang N, Guo S, Sun H, Tong J, Chen T, Li J. The role of miR-130a-3p and SPOCK1 in tobacco exposed bronchial epithelial BEAS-2B transformed cells: Comparison to A549 and H1299 lung cancer cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:862-869. [PMID: 31526129 DOI: 10.1080/15287394.2019.1664479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the pathogenesis of human lung cancer induced by tobacco smoke decreased expression levels of microRNAs (miRNAs) are known to occur. At present, the specific miRNAs expression levels reduced by tobacco smoke and subsequent lung cellular transformation remain to be determined. The aim of this study was thus to identify the miRNAs affected following cigarette-smoke exposure in bronchial epithelial BEAS-2B cells that were malignantly transformed into S30 cells. In addition, the miRNAs in S30 transformed cells were compared to human lung cancer cell lines A549 and H1299. Our results identified miR-130a-3p which was down-regulated in S30 cells as well as A549 and H1299 lung cancer cell lines. Using miRNA mimic, a correlation between elevated miR-130a-3p expression levels and reduced migration in A549 and H1299 cell lines and S30 cells was noted as evidenced by transwell and wound healing assays accompanied by enhanced apoptosis. Further, two online target genes prediction programs TargetScan and miRDB were employed to identify the miRNA target gene SPOCK1 in all three cell types. SPOCK1 expression was higher in unexposed bronchial epithelial BEAS-2B cells. It is of interest that however silencing SPOCK1 in transformed S30 cells exposed to cigarette-smoke a marked depression in cell migration was noted. Our findings demonstrate that upregulated miR-130a-3p was associated with reduced SPOCK1 expression in transformed S30 as well as lung cancer A549 and H1299 cell lines indicating that cigarette transformed cells behave similar to lung cancer cells and this process involves diminished lung cancer cells migration.
Collapse
Affiliation(s)
- Xiao-Fan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Shuang Guo
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
| | - Huiying Sun
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| |
Collapse
|
26
|
MicroRNAs as Potential Biomarkers for Chemoresistance in Adenocarcinomas of the Esophagogastric Junction. JOURNAL OF ONCOLOGY 2019; 2019:4903152. [PMID: 31467538 PMCID: PMC6701342 DOI: 10.1155/2019/4903152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Concerning adenocarcinomas of the esophagogastric junction, neoadjuvant chemotherapy is regularly implemented, but patients' response varies greatly, with some cases showing no therapeutic effect, being deemed as chemoresistant. Small, noncoding RNAs (miRNAs) have evolved as key players in biological processes, including malignant diseases, often promoting tumor growth and expansion. In addition, specific miRNAs have been implicated in the development of chemoresistance through evasion of apoptosis, cell cycle alterations, and drug target modification. We performed a retrospective study of 33 patients receiving neoadjuvant chemotherapy by measuring their miRNA expression profiles. Histologic tumor regression was evaluated using resection specimens, while miRNA profiles were prepared using preoperative biopsies without prior therapy. A preselected panel of 96 miRNAs, known to be of importance in various malignancies, was used to test for significant differences between responsive (chemosensitive) and nonresponsive (chemoresistant) cases. The cohort consisted of 12 nonresponsive and 21 responsive cases with the following 4 miRNAs differentially expressed between both the groups: hsa-let-7f-5p, hsa-miRNA-221-3p, hsa-miRNA-31-5p, and hsa-miRNA-191-5p. The former 3 showed upregulation in chemoresistant cases, while the latter showed upregulation in chemosensitive cases. In addition, significant correlation between high expression of hsa-miRNA-194-5p and prolonged survival could be demonstrated (p value <0.0001). In conclusion, we identified a panel of 3 miRNAs predicting chemoresistance and a single miRNA contributing to chemosensitivity. These miRNAs might function as prognostic biomarkers and enable clinicians to better predict the effect of one or more reliably select patients benefitting from (neoadjuvant) chemotherapy.
Collapse
|
27
|
Zhang J, Zhou Q, Wang H, Huang M, Shi J, Han F, Cai W, Li Y, He T, Hu D. MicroRNA-130a has pro-fibroproliferative potential in hypertrophic scar by targeting CYLD. Arch Biochem Biophys 2019; 671:152-161. [PMID: 31283910 DOI: 10.1016/j.abb.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Hypertrophic scars are dermal fibrosis diseases that protrude from the surface of the skin and irregularly extend to the periphery, seriously affecting the appearance and limb function of the patient. In this study, we found that microRNA-130a (miR-130a) was increased in hypertrophic scar tissues and derived primary fibroblasts, accompanied by up-regulation of collagen1/3 and α-SMA. Inhibition of miR-130a in hypertrophic scars fibroblasts suppressed the expression of collagen1/3 and α-SMA as well as the cell proliferation. Bioinformatics analysis combined with luciferase reporter gene assay results indicated that CYLD was a target gene of miR-130a, and the miR-130a mimic could reduce the level of CYLD. In contrast to miR-130a, the expression of CYLD was downregulated in hypertrophic scars and their derived fibroblasts. Overexpressing CYLD inhibited the expression of collagen 1/3 and α-SMA, slowed cell proliferation, and inhibited Akt activity. As expected, further study showed that the overexpression of CYLD could prevent the pro-fibroproliferative effects of miR-130a. Consistent with the in vitro results, the inhibitor of miR-130a effectively ameliorated excessive collagen deposition in bleomycin-induced skin fibrosis mouse model. Taken together, our results indicate that miR-130a promotes collagen secretion, myofibroblast transformation and cell proliferation by targeting CYLD and enhancing Akt activity. Therefore, the miR-130a/CYLD/Akt pathway may serve as a novel entry point for future skin fibrosis research.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
28
|
Gu X, Wang XQ, Lin MJ, Liang H, Fan SY, Wang L, Yan X, Liu W, Shen FX. Molecular interplay between microRNA-130a and PTEN in palmitic acid-mediated impaired function of endothelial progenitor cells: Effects of metformin. Int J Mol Med 2019; 43:2187-2198. [PMID: 30896786 DOI: 10.3892/ijmm.2019.4140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Metformin serves an important role in improving the functions of endothelial progenitor cells (EPCs). MicroRNAs (miRNAs), small non‑coding RNAs, have been investigated as significant regulators of EPC vascular functions. The present study investigated the molecular crosstalk between metformin and miRNA‑130a (miR‑130a) in the functions of EPCs exposed to palmitic acid (PA). Isolated EPCs were treated with metformin, PA, and metformin + PA, respectively. Cell Counting Kit‑8, Transwell and Matrigel assays were performed to detect the proliferation, migration and tube formation ability of EPCs following different treatments. The expression of miR‑130a, phosphatase and tensin homolog (PTEN) and phosphorylated‑AKT was analyzed by reverse transcription‑quantitative polymerase chain reaction and western blotting. The specific mechanism underlying the function of metformin in EPCs was further elucidated by transfecting miR‑130a mimics and inhibitor to overexpress and inhibit the expression of miR‑130a in EPCs, respectively. EPCs exhibited impaired functions of proliferation (P<0.01 compared with the control), migration (P<0.01 compared with the control) and tube formation (P<0.01 compared with the control) following treatment with PA, and the expression levels of miR‑130a and PTEN were decreased and increased, respectively. However, the presence of metformin, or the overexpression of miR‑130a using miR‑130a mimic alleviated the impairment of angiogenesis and proliferation, decreased the expression of PTEN and activated the phosphoinositide‑3 kinase/AKT pathway in EPCs exposed to PA. By contrast, downregulating the expression of miR‑130a with a miR‑130a inhibitor reversed the metformin‑mediated protection. These results demonstrate the beneficial effect of miR‑130a/PTEN on EPC functions, which can be regulated by metformin. The effects of metformin on improving PA‑induced EPC dysfunction are mediated by miR‑130a and PTEN, which may assist in the prevention and/or treatment of diabetic vascular disease.
Collapse
Affiliation(s)
- Xuemei Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao-Qian Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Min-Jie Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Haili Liang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shi-Yan Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Luyin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoqing Yan
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenyue Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fei-Xia Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
29
|
Jia J, Zhang X, Zhan D, Li J, Li Z, Li H, Qian J. LncRNA H19 interacted with miR-130a-3p and miR-17-5p to modify radio-resistance and chemo-sensitivity of cardiac carcinoma cells. Cancer Med 2019; 8:1604-1618. [PMID: 30843379 PMCID: PMC6488143 DOI: 10.1002/cam4.1860] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
The current investigation explored the synthetic contribution of lncRNA H19, miR-130a-3p, and miR-17-5p to radio-resistance and chemo-sensitivity of cardiac cancer cells. Totally 284 human cardiac cancer tissues were gathered, and they have been pathologically diagnosed. The cardiac cancer cells were isolated with utilization of the mechanic method. Moreover, cisplatin, adriamycin, mitomycin, and 5-fluorouracil were designated as the chemotherapies, and single-dose X-rays were managed as the radiotherapy for cardiac cancer cells. We also performed luciferase reporter gene assay to verify the targeted relationship between H19 and miR-130a-3p, as well as between H19 and miR-17-5p. Finally, mice models were established to examine the functions of H19, miR-130a-3p, and miR-17-5p on the development of cardiac cancer. The study results indicated that H19, miR-130a-3p, and miR-17-5p expressions within cardiac cancer tissues were significantly beyond those within adjacent nontumor tissues (P < 0.05), and H19 expression was positively correlated with both miR-130a-3p (rs = 0.43) and miR-17-5p (rs = 0.49) expressions. The half maximal inhibitory concentrations (IC50) of cisplatin, adriamycin, mitomycin, and 5-fluorouracil for cardiac cancer cells were, respectively, determined as 2.01 μg/mL, 8.35 μg/mL, 24.44 μg/mL, and 166.42 μg/mL. The overexpressed H19, miR-130a-3p, and miR-17-5p appeared to improve the survival rate and viability of cardiac cancer cells that were exposed to chemotherapies and X-rays (all P < 0.05). It was also drawn from luciferase reporter gene assay that H19 could directly target miR-130a-3p and miR-17-5p, thereby modifying the sensitivity of cardiac cancer cells to drugs and X-rays (P < 0.05). Finally, the mice models also produced larger tumor size and higher tumor weight, when H19, miR-130a-3p, or miR-17-5p expressions were up-regulated within them (P < 0.05). In conclusion, H19 could act on miR-130a-3p or miR-17-5p to alter the radio- and chemo-sensitivities of cardiac cancer cells, helping to improve the radio-/chemotherapies for cardiac cancer.
Collapse
Affiliation(s)
- Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | | | - Dankai Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixiang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongbo Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jun Qian
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
30
|
Liu L, Liu Y, Feng C, Chang J, Fu R, Wu T, Yu F, Wang X, Xia L, Wu C, Fang B. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials 2019; 192:523-536. [PMID: 30529871 DOI: 10.1016/j.biomaterials.2018.11.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Runqing Fu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tingting Wu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fei Yu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoting Wang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
31
|
Complex role of miR-130a-3p and miR-148a-3p balance on drug resistance and tumor biology in esophageal squamous cell carcinoma. Sci Rep 2018; 8:17553. [PMID: 30510209 PMCID: PMC6277408 DOI: 10.1038/s41598-018-35799-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
miRNAs play a crucial role in cancer development and progression. However, results on the impact of miRNAs on drug sensitivity and tumor biology vary, and most studies to date focussed on either increasing or decreasing miRNA expression levels. Therefore, the current study investigated the role of different expression levels of miR-130a-3p and miR-148a-3p on drug resistance and tumor biology in four esophageal squamous cell carcinoma cell lines. Interestingly, up- and downregulation of both miRNAs significantly increased sensitivity towards chemotherapy. MiRNA modulation also reduced adherence and migration potential, and increased apoptosis rates. Target analyses showed that up- and downregulation of both miRNAs activated the apoptotic p53-pathway via increased expression of either BAX (miR-148a-3p) or Caspase 9 (miR-130a-3p). miR-148a-3p downregulation seemed to mediate its effects primarily via regulation of Bim rather than Bcl-2 levels, whereas we found the opposite scenario following miR-148a-3p upregulation. A similar effect was observed for miR-130a-3p regulating Bcl-2 and XIAP. Our data provide the first evidence that miRNA modulation in both directions may lead to similar effects on chemotherapy response and tumor biology in esophageal squamous cell carcinoma. Most interestingly, up- and downregulation seem to mediate their effects via modulating the balance of several validated or predicted targets.
Collapse
|
32
|
Teng YD, Abd-El-Barr M, Wang L, Hajiali H, Wu L, Zafonte RD. Spinal cord astrocytomas: progresses in experimental and clinical investigations for developing recovery neurobiology-based novel therapies. Exp Neurol 2018; 311:135-147. [PMID: 30243796 DOI: 10.1016/j.expneurol.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 12/25/2022]
Abstract
Spinal cord astrocytomas (SCAs) have discernibly unique signatures in regards to epidemiology, clinical oncological features, genetic markers, pathophysiology, and research and therapeutic challenges. Overall, there are presently very limited clinical management options for high grade SCAs despite progresses made in validating key molecular markers and standardizing tumor classification. The endeavors were aimed to improve diagnosis, therapy design and prognosis assessment, as well as to define more effective oncolytic targets. Efficacious treatment for high grade SCAs still remains an unmet medical demand. This review is therefore focused on research state updates that have been made upon analyzing clinical characteristics, diagnostic classification, genetic and molecular features, tumor initiation cell biology, and current management options for SCAs. Particular emphasis was given to basic and translational research endeavors targeting SCAs, including establishment of experimental models, exploration of unique profiles of SCA stem cell-like tumor survival cells, characterization of special requirements for effective therapeutic delivery into the spinal cord, and development of donor stem cell-based gene-directed enzyme prodrug therapy. We concluded that precise understanding of molecular oncology, tumor survival mechanisms (e.g., drug resistance, metastasis, and cancer stem cells/tumor survival cells), and principles of Recovery Neurobiology can help to create clinically meaningful experimental models of SCAs. Establishment of such systems will expedite the discovery of efficacious therapies that not only kill tumor cells but simultaneously preserve and improve residual neural function.
Collapse
Affiliation(s)
- Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA.
| | - Muhammad Abd-El-Barr
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA; Current affiliation: Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Lei Wang
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Hadi Hajiali
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Liqun Wu
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Ross D Zafonte
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
33
|
Strub GM, Perkins JA. MicroRNAs for the pediatric otolaryngologist. Int J Pediatr Otorhinolaryngol 2018; 112:195-207. [PMID: 30055733 DOI: 10.1016/j.ijporl.2018.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
The scope of pediatric otolaryngology is broad and encompasses a wide variety of diseases in which the fundamental phenotype-causing abnormality exists at the level of gene regulation and expression. Development of novel molecular biology instruments to diagnose disease, monitor treatment response, and prevent recurrence will facilitate the delivery of appropriate surgical and adjuvant medical treatments with lower morbidity. MicroRNAs (miRNAs) have emerged as a relatively new class of molecules that directly modulate gene expression and are abnormally expressed in a multitude of disease processes including those within the scope of pediatric otolaryngology. Functionally, miRNAs control multiple cellular functions including angiogenesis, cell proliferation, cell survival, genome stability, and inflammation. These short, non-protein coding RNA molecules are present and stable in tissue, blood, saliva, and urine, making them ideal disease biomarkers. The simple structure of miRNAs and their ability to directly modulate the expression of specific genes lends exciting therapeutic potential to miRNA-based therapies. Here we review the current literature of miRNAs as it relates to diseases within the scope of pediatric otolaryngology, and discuss their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Graham M Strub
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jonathan A Perkins
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, 98101, United States; Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital, Seattle, WA, 98105, United States.
| |
Collapse
|
34
|
Link A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:3313-3329. [PMID: 30122873 PMCID: PMC6092583 DOI: 10.3748/wjg.v24.i30.3313] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/10/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Non-invasive diagnostic biomarkers may contribute to an early identification of gastric cancer (GC) and improve the clinical management. Unfortunately, no sensitive and specific screening biomarkers are available yet and the currently available approaches are limited by the nature of the disease. GC is a heterogenic disease with various distinct genetic and epigenetic events that occur during the multifactorial cascade of carcinogenesis. MicroRNAs (miRNAs) are commonly deregulated in gastric mucosa during the Helicobacter pylori infection and in stepwise manner from chronic gastritis, through preneoplastic conditions such as atrophic gastritis and intestinal metaplasia, to early dysplasia and invasive cancer. Identification of miRNAs in blood in 2008 led to a great interest on miRNA-based diagnostic, prognostic biomarkers in GC. In this review, we provide the most recent systematic review on the existing studies related to miRNAs as diagnostic biomarkers for GC. Here, we systematically evaluate 75 studies related to differential expression of circulating miRNAs in GC patients and provide novel view on various heterogenic aspects of the existing data and summarize the methodological differences. Finally, we highlight several important aspects crucial to improve the future translational and clinical research in the field.
Collapse
Affiliation(s)
- Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Juozas Kupcinskas
- Institute for Digestive Research and Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas LT-44307, Lithuania
| |
Collapse
|
35
|
Liu X, Pan B, Sun L, Chen X, Zeng K, Hu X, Xu T, Xu M, Wang S. Circulating Exosomal miR-27a and miR-130a Act as Novel Diagnostic and Prognostic Biomarkers of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:746-754. [PMID: 29739748 DOI: 10.1158/1055-9965.epi-18-0067] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/22/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Colorectal cancer is one of the most common cancers worldwide usually is associated with poor prognosis due to the advanced stage when diagnosed. This study aimed to investigate whether specific circulating exosomal miRNAs could act as biomarkers for early diagnosis of colorectal cancer.Methods: A total of 369 peripheral blood samples were included in this study. In the discovery phase, circulating exosomal miR-27a and miR-130a were selected after synthetical analysis of two GEO datasets and TCGA database. The differential expression and diagnostic utility of miR-27a and miR-130a panel were validated using qRT-PCR and ROC curve analysis in subsequent training phase, validation phase, and external validation phase. The prognosis of circulating exosomal miR-27a and miR-130a were investigated using the Kaplan-Meier method.Results: The expression of exosomal miR-27a and miR-130a in plasma significantly increased in colorectal cancer. The area under ROC curves (AUC) of miR-27a (miR-130a) were 0.773 (0.742) in the training phase, 0.82 (0.787) in the validation phase, and 0.746 (0.697) in the external validation phase. The combination of two miRNAs presented higher diagnostic utility for colorectal cancer (AUCs = 0.846, 0.898, and 0.801 for the training, validation, and external validation phases, respectively). Patients with colorectal cancer with high expression of circulating exosomal miR-27a or miR-130a underwent poorer prognosis.Conclusions: We identified a circulating exosomal miRNAs panel for the detection of colorectal cancer.Impact: The exosomal miR-27a and miR-130a panel in plasma may act as a noninvasive biomarker for early detection and predicting prognosis of colorectal cancer. Cancer Epidemiol Biomarkers Prev; 27(7); 746-54. ©2018 AACR.
Collapse
Affiliation(s)
- Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical School of Southeast University, Jiangsu Sheng, China
| | - Kaixuan Zeng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical School of Southeast University, Jiangsu Sheng, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical School of Southeast University, Jiangsu Sheng, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China. .,Medical School of Southeast University, Jiangsu Sheng, China
| |
Collapse
|
36
|
Ma Y, Qin C, Li L, Miao R, Jing C, Cui X. MicroRNA-21 promotes cell proliferation by targeting tumor suppressor TET1 in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1439-1445. [PMID: 31938241 PMCID: PMC6958103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/24/2017] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression by binding to mRNA, and can function as oncogenes or tumor suppressors depending on the target. TET1 acts as tumor-suppressor, which is downregulated in colorectal cancers (CRC) and inhibits cell growth. However, it has not been studied as to whether miRNAs, suppressing target expression by binding to the 3'UTR, regulate TET1 expression in colorectal cancers. Here, our study found that miR-21 has matching sites on TET1. In the tumor tissue samples from 50 patients with CRC, the expression of miR-21 was upregulated compared with that in adjacent tissue samples while the expression of TET1 showed a significant decrease. In addition, miR-21 expression was negatively correlated with the expression of TET1. Moreover, low expression of miR-21 by the transfection of colorectal cancer cell lines with miR-21 inhibitors, the effect on TET1 expression was opposite to the change of miR-21 expression. Furthermore, our results indicated that miR-21 promoted proliferation of colorectal cancer cells by targeting TET1. These findings may provide a theoretical basis for clarifying the physiological and pathological role of miR-21 in colorectal cancer.
Collapse
Affiliation(s)
- Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Chengkun Qin
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Ruizheng Miao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Xianping Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| |
Collapse
|
37
|
Complex Epigenetic Regulation of Chemotherapy Resistance and Biohlogy in Esophageal Squamous Cell Carcinoma via MicroRNAs. Int J Mol Sci 2018; 19:ijms19020499. [PMID: 29414899 PMCID: PMC5855721 DOI: 10.3390/ijms19020499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 01/27/2018] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Resistance towards chemotherapy is a major obstacle in the treatment of esophageal squamous cell carcinoma (ESCC). We investigated the role of specific microRNAs in chemotherapy resistance and tumor biology. Methods: We selected three microRNAs from characteristic microRNA signatures of resistant ESCC (hsa-miR-125a-5p, hsa-miR-130a-3p, hsa-miR-1226-3p), and hsa-miR-148a-3p. Effects on chemotherapy, adhesion, migration, apoptosis and cell cycle were assessed in six ESCC cell lines. Target analyses were performed using Western blotting and luciferase techniques. Results: MiR-130a-3p sensitized cells towards cisplatin in 100% of cell lines, miR-148a-3p in 83%, miR-125a-5p in 67%, miR-1226-3p in 50% (p ≤ 0.04). MiR-130a-3p sensitized 83% of cell lines towards 5-FU, miR-148a-3p/miR-125a-5p/miR-1226-3p only 33% (p ≤ 0.015). Several resistance-relevant pathways seem to be targeted on various levels. Bcl-2 was confirmed as a direct target of miR-130a-3p and miR-148a-3p, and p53 as a target of miR-125a-5p. All microRNAs decreased migration and adhesion, except miR-130a-3p, and increased apoptosis. Simultaneous manipulation of two microRNAs exhibited additive sensitizing effects towards cisplatin in 50% (miR-125a-5p/miR-148a-3p), and 75% (miR-148a-3p/miR-130a-3p) of cell lines (p ≤ 0.006). Conclusion: Our data present strong evidence that specific microRNA signatures are responsible for drug resistance and aggressiveness of ESCC. Final functional readout of these complex processes appears to be more important than single microRNA-target interactions.
Collapse
|
38
|
Yao Q, Gu A, Wang Z, Xue Y. MicroRNA-144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase-2. Exp Ther Med 2018; 15:3088-3095. [PMID: 29456712 DOI: 10.3892/etm.2018.5763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) poses a serious public health threat and the 5-year survival rate of patients with GC is low. MicroRNAs (miRNAs/miRs) may serve oncogenic or tumor suppressor functions during tumorigenesis by regulating cell proliferation, apoptosis, migration and invasion and it has been demonstrated that they may be dysregulated in various types of cancer. The present study demonstrated that miR-144 and GATA4 were downregulated in GC tissues and cell lines and suggested that this may be due to hypermethylation. Additionally, miR-144 and GATA4 had synergistic effects on GC cells by repressing cell proliferation and inducing cell cycle arrest and apoptosis. The results of bioinformatics and a luciferase reporter assay indicated that cyclooxygenase-2 (COX-2) is a direct target of miR-144 and that miR-144 negatively regulated the expression of COX-2, which inhibits the viability of GC cells. GATA4 also induced a similar effect on COX-2. Taken together, the results of the present study may improve understanding of the underlying mechanism of miR-144 and GATA4 in GC.
Collapse
Affiliation(s)
- Qiang Yao
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Anxin Gu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zhuozhong Wang
- Department of Statistics, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yingwei Xue
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
39
|
Wang S, Han H, Hu Y, Yang W, Lv Y, Wang L, Zhang L, Ji J. MicroRNA-130a-3p suppresses cell migration and invasion by inhibition of TBL1XR1-mediated EMT in human gastric carcinoma. Mol Carcinog 2017; 57:383-392. [PMID: 29091326 DOI: 10.1002/mc.22762] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
MiR-130a-3p was found to play tumor suppressor role in most human cancers, except for gastric cancer. However, in this study, we demonstrated that miR-130a-3p was significantly down-regulated in gastric carcinoma (GC) tissues compared with adjacent non-neoplastic tissues, and decreased miR-130a-3p expression was associated with shorter overall survival (OS) and was an independent prognostic factor for OS in GC patients. Over-expression of miR-130a-3p remarkably inhibited not only GC cell migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro, but also tumorigenesis and lung metastasis in the chick embryo chorioallantoic membrane (CAM) assay in vivo. Conversely, inhibition of miR-130a-3p resulted in opposite phenotype changes in GC cells. Furthermore, TBL1XR1 was identified as a direct target of miR-130a-3p, and reintroduction of TBL1XR1 into miR-130a-3p-transfected MGC-803 cells reversed the inhibitory effects of miR-130a-3p on GC cell migration, invasion and EMT. Taken together, our data suggested that miR-130a-3p suppressed aggressive phenotype of GC cells partially by direct targeting and decreasing TBL1XR1 and subsequent EMT process.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, P.R. China
| | - Haibo Han
- Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, P.R. China
| | - Ying Hu
- Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, P.R. China
| | - Wei Yang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, P.R. China
| | - Yunwei Lv
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, P.R. China
| | - Limin Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, P.R. China
| | - Lianhai Zhang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| |
Collapse
|
40
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
41
|
Downregulation of miR-130a promotes cell growth and epithelial to mesenchymal transition by activating HMGB2 in glioma. Int J Biochem Cell Biol 2017; 93:25-31. [PMID: 28851665 DOI: 10.1016/j.biocel.2017.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/30/2017] [Accepted: 08/19/2017] [Indexed: 12/16/2022]
Abstract
Aberrant expression of miR-130a is usually found in cancer studies; however, the role of miR-130a has seldom been reported in glioma. We explored miR-130a's function and the underlying mechanism in glioma. It was found that miR-130a expression was significantly down-regulated in glioma tissues and cell lines. Overexpression of miR-130a decreased glioma cell growth and invasion both in vitro and in vivo. We identified the oncogene HMGB2 as a downstream target of miR-130a by using luciferase and western blot assays. Knockdown of HMGB2 mimicked the effect of miR-130a in glioma cells. Taken together, our study demonstrate that miR-130a may function as a tumor suppressor in glioma and suggest that miR-130a is a potential therapeutic target for glioma patients.
Collapse
|
42
|
Chen W, Tong K, Yu J. MicroRNA-130a is upregulated in colorectal cancer and promotes cell growth and motility by directly targeting forkhead box F2. Mol Med Rep 2017; 16:5241-5248. [PMID: 28849155 PMCID: PMC5647080 DOI: 10.3892/mmr.2017.7257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers among males and females worldwide. Despite progress in diagnostic and therapeutic strategies for CRC patients, the prognosis for patients with advanced CRC remains poor. MicroRNAs (miRNAs/miRs) are a class of highly conserved short, endogenously expressed and single‑stranded non‑coding RNAs. In recent years, increasing studies have demonstrated that dysregulation of miRNAs is closely associated with CRC carcinogenesis and progression. The aim of the present study was to explore the expression, roles and underlying molecular mechanism of miR‑130a in CRC. The results indicated that miR‑130a was significantly upregulated in CRC, and that miR‑130a expression levels were correlated with TNM stage and lymph node metastasis of CRC. Inhibition of miR‑130a markedly suppressed colorectal cancer cell proliferation, migration and invasion. Furthermore, forkhead box F2 (FOXF2) was identified as a direct downstream target gene of miR‑130a in colorectal cancer. Downregulation of FOXF2 could partially reverse the functions induced by miR‑130a under‑expression in CRC cells. These findings suggested that miR‑130a can regulate FOXF2 and function as an oncogene in CRC. Therefore, miR‑130a may serve as a useful therapeutic agent for miRNA‑based CRC targeted therapy.
Collapse
Affiliation(s)
- Wenzhong Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Kehui Tong
- Department of Gastrointestinal Surgery, Yinzhou Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Jiren Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
43
|
Zhang Y, Guan DH, Bi RX, Xie J, Yang CH, Jiang YH. Prognostic value of microRNAs in gastric cancer: a meta-analysis. Oncotarget 2017; 8:55489-55510. [PMID: 28903436 PMCID: PMC5589675 DOI: 10.18632/oncotarget.18590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous articles have reported that expression levels of microRNAs (miRNAs) are associated with survival time of patients with gastric cancer (GC). A systematic review and meta-analysis was performed to study the outcome of it. DESIGN Meta-analysis. METHODS English studies estimating expression levels of miRNAs with any of survival curves in GC were identified up till March 19, 2017 through performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two authors independently. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). RESULTS Sixty-nine relevant articles about 26 miRNAs with 6148 patients were ultimately included. GC patients with high expression of miR-20b (HR=2.38, 95%CI=1.16-4.87), 21 (HR=1.77, 95%CI=1.01-3.08), 106b (HR=1.84, 95%CI=1.15-2.94), 196a (HR=2.66, 95%CI=1.94-3.63), 196b (HR=1.67, 95%CI=1.38-2.02), 214 (HR=1.84, 95%CI=1.27-2.67) or low expression of miR-125a (HR=2.06, 95%CI=1.26-3.37), 137 (HR=3.21, 95%CI=1.68-6.13), 141 (HR=2.47, 95%CI=1.34-4.56), 145 (HR=1.62, 95%CI=1.07-2.46), 146a (HR=2.60, 95%CI=1.63-4.13), 206 (HR=2.85, 95%CI=1.73-4.70), 218 (HR=2.61, 95%CI=1.74-3.92), 451 (HR=1.73, 95%CI=1.19-2.52), 486-5p (HR=2.45, 95%CI=1.65-3.65), 506 (HR=2.07, 95%CI=1.33-3.23) have significantly poor OS (P<0.05). CONCLUSIONS In summary, miR-20b, 21, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 demonstrate significantly prognostic value. Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC.
Collapse
Affiliation(s)
- Yue Zhang
- 1 First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, People's Republic of China
| | - Dong-Hui Guan
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Rong-Xiu Bi
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Jin Xie
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Chuan-Hua Yang
- 3 Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Yue-Hua Jiang
- 4 Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| |
Collapse
|
44
|
miR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-κB in high-grade serous ovarian carcinoma. Cell Death Differ 2017; 24:2089-2100. [PMID: 28800130 DOI: 10.1038/cdd.2017.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Activation of mammalian target of rapamycin (mTOR) signaling pathway is associated with poor prognosis of epithelial ovarian cancer. The TSC1-TSC2 complex is a critical negative regulator of mTOR signaling. Here, we demonstrated that TSC1 was frequently downregulated in high-grade serous ovarian carcinoma (HGSOC) and low TSC1 expression level is associated with advanced tumor stage. We next identified miR-130a to be a negative regulator of TSC1 by targeting its 3'UTR. miR-130a was overexpressed in HGSOC and could drive proliferation and invasion/metastasis of ovarian cancer cells. miR-130a could also attenuate rapamycin/starvation-induced autophagy. Ectopic TSC1 expression could block the effects of miR-130a on cell proliferation, migration and autophagy. Finally, we found that miR-130a expression could be upregulated by inflammatory factors and was transactivated by NF-κB. Therefore, our findings establish a crosstalk between inflammation and mTOR signaling that is mediated by miR-130a, which might have a pivotal role in the initiation and progression of HGSOC.
Collapse
|
45
|
Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene 2017; 36:6617-6626. [PMID: 28783166 DOI: 10.1038/onc.2017.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eμ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.
Collapse
|
46
|
Zhou Y, Li R, Yu H, Wang R, Shen Z. microRNA-130a is an oncomir suppressing the expression of CRMP4 in gastric cancer. Onco Targets Ther 2017; 10:3893-3905. [PMID: 28831264 PMCID: PMC5548272 DOI: 10.2147/ott.s139443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the most common causes of death worldwide, although its incidence has steadily declined in recent years. There is strong evidence that aberrantly expressed microRNAs (miRNAs) are involved in gastric cancer tumorigenesis. Furthermore, CRMP4 is closely associated with the occurrence and development of gastric cancer, and our predictions suggest that miR-130a, which can promote gastric cancer tumorigenesis, is a potential CRMP4 regulator. In this study, we investigated the expression of CRMP4 and miR-130a in human gastric cancer cell lines by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot (WB) examination and direct interactions between miR-130a and CRMP4 by dual-luciferase reporter assay. We also evaluated the biological roles of miR-130a and CRMP4 in gastric cancer cells by flow cytometry, MTT assay, soft agar colony formation assay, and Transwell tests and confirmed CRMP4 function in vivo, using a tumor xenograft model. Our results demonstrated that CRMP4 expression was significantly decreased at both the gene and protein levels, while miR-130a expression was notably increased, in five human gastric cancer cell lines compared with human gastric epithelial cells. Dual-luciferase reporter assays indicated that CRMP4 was the direct target of miR-130a. Moreover, an inverse regulatory relationship between miR-130a and CRMP4 was verified by qRT-PCR and WB, and overexpression of miR-130a in BGC823 cells enhanced apoptosis and cell proliferation, arrested the cell cycle in G0/G1, and facilitated cell colony formation, invasion, migration, and adhesion, while upregulation of CRMP4 had opposite effects. Finally, the growth and weight of transplanted tumors derived from BGC823 cells in which CRMP4 was knocked down were remarkably reduced. These data indicate that miR-130a is an oncomir targeting CRMP4 and could be developed as a potential prognostic factor and a novel therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of Pharmacy, Kunming Medical University
- Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Ruhong Li
- Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Haidong Yu
- Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Ruotian Wang
- Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | | |
Collapse
|
47
|
Yi L, Liu M, Tang Z. MicroRNA‑130a inhibits growth and metastasis of osteosarcoma cells by directly targeting ZEB1. Mol Med Rep 2017; 16:3606-3612. [PMID: 28714003 DOI: 10.3892/mmr.2017.6968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. microRNAs (miRNAs) have previously been reported to be involved in the carcinogenesis and progression of OS, and may be useful prognostic markers or therapeutic targets for patients with OS. miRNA‑130a has been previously studied in multiple types of human cancer. However, its expression and function in OS has not been well documented. The aim of the present study was to investigate the expression, biological functions and molecular mechanisms underlying the effect of miR‑130a in OS. miR‑130a was significantly downregulated in OS tissues and cell lines compared with normal bone tissue and a normal osteoblast cell line. miR‑130a expression levels was significantly negatively correlated with the clinical stage and metastasis of OS. Further studies indicated that overexpression of miR‑130a inhibited OS cell proliferation, migration and invasion in vivo. In terms of the mechanisms underlying this effect, zinc finger E‑box binding homeobox 1 (ZEB1) was demonstrated to act as a direct target of miR‑130a in OS. Furthermore, downregulation of ZEB1 by interference with small interfering RNA mimicked the effects of transfection with an miR‑130a mimic in OS. In conclusion, these results demonstrated that miR‑130a functioned as a tumor suppressor in OS, partially via targeting ZEB1, suggesting that miR‑130a may be considered as a target for the treatment of patients with OS.
Collapse
Affiliation(s)
- Lankai Yi
- Department of Hand and Feet Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Meixiu Liu
- Department of Hand and Feet Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Zhiliang Tang
- Department of Orthopedics, An Qiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
48
|
Asukai K, Kawamoto K, Eguchi H, Konno M, Asai A, Iwagami Y, Yamada D, Asaoka T, Noda T, Wada H, Gotoh K, Nishida N, Satoh T, Doki Y, Mori M, Ishii H. Micro-RNA-130a-3p Regulates Gemcitabine Resistance via PPARG in Cholangiocarcinoma. Ann Surg Oncol 2017; 24:2344-2352. [PMID: 28560603 DOI: 10.1245/s10434-017-5871-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The prognosis of cholangiocarcinoma (CCA) is so poor that its chemoresistance needs to be reduced. In this study, we focused on the microRNAs (miRNAs) associated with gemcitabine resistance of CCA and assessed the clinical significance of miRNAs and their target genes. METHODS We performed miRNA microarray analysis for two CCA cell lines (CCLP-1 and MzChA-1) and their gemcitabine-resistant (GR) cells. An miR-130a-3p mimic was induced into CCA cells using lipofection, and we used pioglitazone as a peroxisome proliferator-activated receptor-γ (PPARγ) agonist in vitro. The expression of miR-130a-3p was studied in 27 intrahepatic CCA samples after laser capture microdissection (LCM) and by immunohistochemistry from patients who had undergone curative resection from March 2004 to November 2012 at Osaka University Hospital. RESULTS miR-130a-3p expression was upregulated in CCLP-1-GRs and MzChA-1-GRs significantly more than in their parental cells. Transfection of the miR-130a-3p mimic into CCA cells increased gemcitabine resistance, and we detected PPARG as a target gene of miR-130a-3p. Furthermore, pioglitazone had a synergistic effect with gemcitabine and alleviated gemcitabine resistance of CCA GR cells. Moreover, clinical examination revealed that for patients who underwent adjuvant gemcitabine therapy, those who were PPARγ positive had significantly longer disease-free survival than those who were PPARγ negative (n = 5 and 11, respectively; p = 0.027). CONCLUSIONS Our data suggest that miR-130a-3p was associated with gemcitabine resistance in CCA through PPARG, and there is a possibility that pioglitazone can be used for the treatment of CCA.
Collapse
Affiliation(s)
- Kei Asukai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ayumu Asai
- Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naohiro Nishida
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan. .,Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
49
|
Zhang HD, Jiang LH, Sun DW, Li J, Ji ZL. The role of miR-130a in cancer. Breast Cancer 2017; 24:521-527. [PMID: 28477068 DOI: 10.1007/s12282-017-0776-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) are short and highly conserved non-coding RNAs molecules consisting of 18-25 nucleotides that regulate gene expression at post-transcriptional level by direct binding to complementary binding sites within the 3'untranslated region (3'UTR) of target mRNAs. New evidences have demonstrated that miRNAs play an important role in diverse physiological processes, including regulating cell growth, apoptosis, metastasis, drug resistance, and invasion. In chromosomes 11 and 22 of the miR-130 family, paralogous miRNA sequences, miR-130a and miR-130b are situated, respectively. MiR-130a has participated in different pathogenesis, including hepatocellular carcinoma, cervical cancer, ovarian cancer, glioblastoma, prostate carcinoma, leukemia, etc. Most important of all, more and more evidences indicate that miR-130a is associated with drug resistance and acts as an intermediate in PI3 K/Akt/PTEN/mTOR, Wnt/β-catenin and NF-kB/PTEN drug resistance signaling pathways. Drug resistance has emerged as a major obstacle to successful treatment of cancer nowadays and in this review, we will reveal the function of miR-130a in cancer, especially in drug resistance. Therefore, it will provide a new therapeutic target for the treatment of cancer, especially in chemotherapy.
Collapse
Affiliation(s)
- He-da Zhang
- Department of General Surgery, Southeast University Medical School, 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| | - Lin-Hong Jiang
- Xuzhou Infectious Disease Hospital, Xuzhou, Jiangsu, China
| | - Da-Wei Sun
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jian Li
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Zhen-Ling Ji
- Department of General Surgery, Southeast University Medical School, 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China.
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
50
|
Gao F, Wang FG, Liu RR, Xue F, Zhang J, Xu GQ, Bi JH, Meng Z, Huo R. Epigenetic silencing of miR-130a ameliorates hemangioma by targeting tissue factor pathway inhibitor 2 through FAK/PI3K/Rac1/mdm2 signaling. Int J Oncol 2017; 50:1821-1831. [PMID: 28393235 DOI: 10.3892/ijo.2017.3943] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
Hemangiomas are the most common vascular tumors that occur frequently in prematures and females. microRNA (miR)-130a is associated with the growth and invasion in many tumors, and its role in hemangiomas has not been addressed so far. The present study revealed that miR‑130a was overexpressed in infantile hemangioma tissues compared with matched tumor-adjacent tissues. The inhibitor of miR-130a restrained cell growth and induced cell apoptosis in vitro. miR‑130a inhibitor also induced a cell cycle arrest at G2/M phase. Further studies revealed that tissue factor pathway inhibitor 2 (TFPI2) was a novel miR-130a target, due to miR-130a bound directly to its 3'-untranslated region and miR-130a inhibitor enhanced the expression of TFPI2. Contrary to the effects of miR-130a inhibitor, TFPI2 siRNA strongly promoted cell growth and colony formation, whereas TFPI2 overexpression contributed to the suppressing effect of miR-130a inhibitor in cell viability. Furthermore, miR-130a inhibitor reduced the activation of focal adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K)/Rac1/anti-mouse double minute (mdm2) pathway proteins, inhibited the expression and nuclear translocation of mdm2. Moreover, FAK overexpression prevented miR-130a inhibitor-induced cell cycle arrest and decrease of cell viability. In vivo experiments, miR-130a inhibition effectively suppressed the tumor growth, restrained angiogenesis by decreasing the expression of angiogenesis markers and the percentage of CD31+ and CD34+. Taken together, our research indicated that miR-130a functions as an oncogene by targeting TFPI2, miR-130a inhibition reduced the growth and angiogenesis of hemangioma by inactivating the FAK/PI3K/Rac1/mdm2 pathway. Thus, miR-130a may serve as a potential therapeutic strategy for the treatment of hemangioma.
Collapse
Affiliation(s)
- Feng Gao
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Fa-Gang Wang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Ren-Rong Liu
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Feng Xue
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Jian Zhang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Guang-Qi Xu
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Jian-Hai Bi
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Zhen Meng
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Ran Huo
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| |
Collapse
|